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SUMMARY

With the renewed interest in Cartesian gridding methodologies for the ease and speed

of gridding complex geometries in addition to the simplicity of the control volumes used

in the computations, it has become important to investigate ways of extending the existing

Cartesian grid solver functionalities. This includes developing methods of modeling the

viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and

addressing the issues related to the distributed memory parallelization of Cartesian solvers.

This research presents advances in two areas of interest in Cartesian grid solvers, vis-

cous effects modeling and MPI parallelization. The development of viscous effects model-

ing using solely Cartesian grids has been hampered by the widely varying control volume

sizes associated with the mesh refinement and the cut cells associated with the solid sur-

face. This problem is being addressed by using physically based modeling techniques to

update the state vectors of the cut cells and removing them from the finite volume inte-

gration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT,

with modifications to its cut cell functionality. The development of MPI parallelization

addresses issues associated with utilizing Cartesian solvers on distributed memory parallel

environments. This work is performed on an existing Cartesian grid solver, CART3D, with

modifications to its parallelization methodology.

xx



CHAPTER I

INTRODUCTION

Computational Fluid Dynamics (CFD) researchers have always had to strike a balance be-

tween the accuracy and fidelity of their model with the efficiency and availability of the

computational hardware. Early on many sacrifices to the accuracy and fidelity of the model

were needed in order to accommodate the available computational hardware. Now tech-

niques and more powerful computational hardware exist that yield more accurate numerical

simulations in complex flow fields. One of the early schemes that has gained renewed in-

terest is the use of Cartesian grids. A benefit of using Cartesian grids is that the number

of terms needed in the solution procedure for the governing equations is greatly reduced

compared to more elaborate gridding techniques since the edges of the control volumes

are coordinate aligned and thus no need for the more complex contravariant velocity for-

mulations. Also, the ability to easily create grids for very complicated geometries makes

Cartesian grids an attractive approach to CFD. The drawback is the complexity associated

with the computational cells that intersect the geometries as well as the inability of the tra-

ditional Cartesian grid formulations to model viscous flows. The present chapter presents

an overview of Cartesian grid methods, Navier-Stokes techniques and parallelization ap-

proaches, and concludes with the motivation for the present work.



Cartesian Grid Origins

Cartesian grids have been utilized in solving a variety of CFD problems from potential

flows [13, 135, 184] to the Euler equations [23, 35, 36, 84, 105, 189] to the Navier-Stokes

equations [38, 39, 49, 59, 79, 180, 178]. Cartesian grids consist of a collection of non-

overlapping, connected control volumes with coordinate aligned edges. Thus, the edge

(or face in three dimensions) normals for all complete cells are aligned with one of the

coordinate directions. Figure 1 shows a typical two-dimensional Cartesian grid around a

curved surface.

iii

Figure 1: Example Cartesian Grid Near Curved Surface

Cartesian gridding techniques have become the focus of recent research due to their

ability to easily handle complex geometries in the grid generation phase, the ease with

which higher order schemes can be applied and the natural connection between the grid



refinement techniques and multigrid acceleration schemes [105]. The difficulties in using

Cartesian grids arise from the fact that the control volumes adjacent to the surfaces are not

usually aligned with the surfaces and thus special techniques need to be employed to handle

the non-Cartesian (cut or split) cells in these regions.

Cut cells are created when the intersection of the Cartesian cell and the solid surface

results in one computational volume with only a fraction of the original volume and possi-

bly non-Cartesian aligned edges, see Figure 2. Split cells are created when the intersection

of the Cartesian cell and the solid surface results in two or more computational volumes

which might have non-Cartesian aligned edges, see Figure 3.

Solid surface overlayed
Cartesian Cell

Resulting Cut Cell

Figure 2: Example of Cut Cell Creation

Solid surface overlayed
Cartesian Cell

Resulting Split Cells

Figure 3: Example of Split Cell Creation



The original use of Cartesian grids involved solving the two-dimension full poten-

tial equation by Purvis and Burkhalter [135], followed shortly afterwards by Wedan and

South [184], in which a non body-oriented structured grid was created on which the full

potential equation was solved. Their solution strategy was to use finite volume techniques

in order to more easily handle the computational cells that were intersected by the solid sur-

face. Additionally, they used linear approximations in the cut cells for the reconstruction of

the wall boundary, conditions which provided a simple algorithm for implementation and

preserved the structure of their coefficient matrix during the solution iteration so that no ex-

tra computational costs were incurred for the cut cells. However, this did not preserve the

actual body curvature and also only provided a linear approximation to the actual surface

lengths and area for the cut cells, and thus could not exactly model curved surfaces. Also,

little mention was made of any attempts at cell refinement to more accurately capture the

surface geometry and flow features.

Later, Clarke et al. [36] used Cartesian grids to solve the two-dimension Euler equations

(again on non grid-aligned surfaces). They attempted to more accurately model the solid

surface boundary conditions by utilizing the local surface curvature in reconstructing the

wall boundary conditions. They also provided more accurate modeling of the cut cell

lengths and areas by using the actual surface geometry in their calculations and not linear

approximations. Additionally, they noted that clustering was needed in certain critical

regions in order to produce accurate results, and this was achieved by clustering entire grid

lines. Cut cells that were too small (less than 50% of the original cell size) were merged

4



with neighborcellsin orderto avoidtime steppingproblemsassociatedwith very small

computationalcells.GaffneyandHassan[60]extendedthisresearchto threedimensions.

Figure4 demonstratesthe caseof cell merging. In this easethe surfacecuts througha

collectionof cells,numbered1-3. Cell 1turnsinto acutcell (numbered1in theresulting

mergedcells)whilecells2 and3 aremergedtogetherinto thecell numbered2 sincecell 3

is toosmallafterthecut.

Solidsurfaceoverlayed
CartesianCells

ResultingMerged
Cells

Figure4: ExampleofMergeCellCreation

Adaptive Mesh Refinement

Berger and LeVeque [23] addressed several deficiencies that existed in the established uni-

form grid methodologies. First, they applied the concept of Adaptive Mesh Refinement [24]

(AMR) in order to improve the accuracy in critical regions without adversely affecting the

efficiency of the numerical integration scheme. The use of AMR effectively allowed the

clustering of blocks of computational grids as the solution process evolved only in the re-

gion that they were needed (and not clustering entire grid lines), by using Richardson-type



extrapolationerrorestimatesto identify regionsof largeerrorsandaddinggrid blocksin

thoseregions.An exampleof AMR is Figure5 whichrepresentsasimpleadaptedgrid for

asupersonicwedgeflow with four levelsof adaption.As canbeseenin the figure,there

aremorecontrolvolumeswheregradientsareto be expected,specifically alongthe sur-

faceto capturethegeometryandalongtheobliqueshock.In regionswith smallgradients,

thereis a lowerdensityof controlvolumes.Alsonoticethatin this figure thereis at most

a2:1 ratioattherefinementinterface,whichis typical of mostAMR schemes,in orderto

promotestabilityin thenumericalschemes.

OneproblemwithBergerandLeVeque'soriginalimplementationof AMR onCartesian

gridswastheproblemof statevariableconservationduringtheAMR stages.Theycarefully

constructedconservativeschemesfor the inter-gridtransferto addresstheproblem. They

alsousedtheideaof wavepropagationanddirectionaldifferencing[89] in orderto increase

thestabilitynearthesmallboundarycells.ThishelpedkeeptheCFL of theboundarycells

reasonablycloseto theCFLof theflowcellsandallowedlargertimestepsto betakenwith

thesolverremainingstable.

SeveralresearchershaveextendedBergerandLeVeque'sresearchinto areassuchas

multigrid Cartesiangrids[55, 56], higheraccuracyflow solversusingmoresophisticated

flux approximations[45,46], time-accurateunsteadyflows [35],anda fronttrackingAMR

scheme[126, 127]that attemptedto track thediscontinuities(suchasshocks)asthe so-

lution evolvedin orderto providemoreaccuracyin therefinedmeshcalculations.Quirk

haddevelopedanAMR basedsoftwarearchitecturecalledAMRita [136, 137],asoftware
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Figure 5: Example Adaptive Grid for Supersonic Wedge Flow

system for automating numerical investigations, that attempts to abstract out much of the

tedium associated with developing and testing CFD software.

Advanced Geometry Modeling

Melton et al. [105] developed techniques for handling more complex surface geometries us-

ing Cartesian gridding techniques. They extracted the surface geometry from CAD/CAM

compatible geometry definitions and used higher-order surface modeling techniques to de-

termine the cut cell geometries. This provided more accurate solid surface reconstructions

which resulted in more accurate solid surface boundary conditions. They also addressed

surface refinement issues that arise from the intersections of arbitrary geometries and the

computational cells. When an arbitrary geometric surface (or set of surfaces) intersected the

7



computationalvolume,multiple intersectionscouldoccurwithin onecell or multiple inde-

pendentcomputationalregionscouldbecreated.Theydevelopedanautomatedtechnique

thatdetectedthesecasesandrefinedtheseregionswith little or nouserinput. Theresultof

thiseffortwasanapplicationthatcouldextractsurfacegeometriesfrom CAD/CAM mod-

els,generatethecomputationalgrids,andsolvethefluid dynamicsequations.Extensionsof

thiseffort havebeendoneby Meltonetal. [104]with improvementsto the grid generation

algorithmsaswell asthegeometryrefinementschemesandthegeometryrepresentations.

As an extensionto the work performedby Melton andhis colleagues,Aftosmis et

al. [3, 4, 22] developeda Cartesiangrid application(CART3D)that provided a number

of improvementsovertheoriginalwork. Theirmajorfocuswasonproviding accurateand

robustresolutionof thecutcell geometriesandhighperformanceimprovementstothesolu-

tionmethodology.Theirworkonthecutcellgeometriesdealtwith providing a systematic

wayof addressingandhandlingthevarietyofcutcelltypesthatcouldoccurwhenasurface

with anarbitrarynumberof facetsintersectsa computationalcell. Along with automatic

handling of cut cells, split cells and merged cells, they also applied a sub-cell resolution

procedure to the solid surfaces of the cut and split cells in order to improve the accuracy

of the surface modeling. This entailed generating a normal for each surface patch from

the original geometry definition that intersected the control volume. In addition, a surface

normal agglomeration technique was developed for the cut and split cells could be used

in order to improve the computational efficiency of the code without sacrificing significant

accuracy. A comprehensive description of this research can be found in reference [2].



In aneffortto handlemorecomplexgeometriesin computationalaeroacousticsconfig-

urations,KurbatskiiandTam[84] developedamethodof treatingsolid surfacesin high-

ordernumericalschemeswithout loosingthe acousticwave speedaccuracyassociated

with the lessdispersiveanddissipativehigh-orderschemesin computationalaeroacous-

tics. Their researchutilized a uniform two-dimensionalmeshand solid boundaryghost

cellswith coarsenesslimitationsimposedby thebody surfacecurvaturethatensuredsim-

ple cut cell geometries.Theyusedthebodycurvatureto developaccuratebody pressure

valuesthat could beappliedto linearsurfaceapproximationsand still retain the desired

accuracy.In orderto achievethis accuracy,a linearsystemof equationson the orderof

thenumberof surfacecellsneededto besolvedin orderto generatetherequiredghostcell

pressureswhichcouldcauseanegativeimpacton theoverallperformanceof the scheme.

Anotherresearchdirectionthatevolvedfrom theCartesiangrid researchwasthestudy

of unsteadyflows, especiallyaboutmovingbodies. Chianget al. [35] were oneof the

first researchersto studytheunsteadyEulerequationsonCartesiangrids andprovidedan

analysisof twotechniquesto adequatelycapturetheunsteadyeffects: (1) small grid ceils

and(2)high-orderaccurateschemes.Bayyuketal. [19] addressedtheissueof movingand

deformingbodiesby definingthemotion of thebody throughthe pre-existingCartesian

grid in two dimensionswith discussionson the extensionto threedimensions,without

results,by Lahur andNakamura[86]. As thebody moved,meshrefinementoccurredin

orderto capturethe surfacegeometryin its newlocation.Cell merging occurred when the

body cut a computational cell into a volume that fell below some specified threshold, as



well aswhencellswerejust beingexposeddueto thebodymotion. Onedrawbackto this

procedurewasthattherewasalimit placedonthetime stepthat dependedon thesmallest

cellsizeandthebodymotionsuchthatthebodycouldnotsweepthroughanentirevolume

in onetime step.Yanget al. [189] developeda similarsolverfrom anexistingstationary

bodysolver[188]andalsoencounteredthetime-steplimitation dueto thebody sweeping

overanentirecell.

Onefinal approachto solvingthemovingbodyproblemwaspresentedby Murmanet.

al. [115] in which anarbitrarily largetime stepis allowedby usinga space-timeconser-

vationapproach[88, 194]to accountfor theeffectsof thebody sweepingentirely through

a control volumein one time stepfor a three-dimensionalconfiguration. This approach

exactlysatisfiesthegeometricconservationlawsfor mostcellsin theflow ateachtime step

with somecellsonly approximatelysatisfyingthegeometricconservationlaws.

Navier-Stokes Modeling

Numerical solution of the Navier-Stokes equations has been the focus of many researchers

throughout the history of Computational Fluid Dynamics (CFD), and a number of differ-

ent approaches have been utilized. Generally, the attempts fall into three categories: (1)

solutions of the full Navier-Stokes equations over the entire computational domain, (2)

solutions of approximations to the Navier-Stokes equations over the entire computational

domain and (3) solutions of approximations to the Navier-Stokes equations in a subdomain

of the entire computational domain.
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Prior to the 1980's,solutionof thefull Navier-Stokesequationsover the entirecom-

putationaldomainwasnormally consideredoutsideof the availablecomputationalre-

sources[134, 152]. Thusearly researchinto generatingcomputationalsolutionsto the

Navier-Stokesequationsprimarily focusedontechniques(2) and(3). Thesemethodswill

bereviewedonpage11andpage15respectively,followedby a discussionof fully resolv-

ing theviscoustermsin theNavier-Stokesequationsfor Cartesiangridsonpage17.

Navier-Stokes Approximations

There are two approximation techniques of interest to Cartesian solutions to the Navier-

Stokes equations. The first is the thin-layer Navier-Stokes approximation that has only

limited use in pure Cartesian formulations, but can be useful in the chimera or hybrid

schemes discussed later. The second is the vorticity confinement technique that uses an

extra force term in the momentum equations to prevent the numerical dissipation of vortices

and model the vortical regions created by the boundary layers in the flow.

Thin-Layer Navier-Stokes Approximation

The thin-layer approximation to the Navier-Stokes equations was developed from a

dimensional analysis of the governing equations for high Reynolds number flows. By

eliminating terms that produced higher order effects, sufficiently accurate solutions to the

Navier-Stokes equations could be developed in a reasonable amount of time on the compu-

tational hardware available. Ultimately, this effort resulted in a solution that resolved the

viscous stresses normal to the body (or bodies) in a thin region while the other directions
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usedtheinviscidfluxesonly.

Steger[152]developedthethin-layerNavier-Stokesapproximationsasameansof ob-

taining solutionsto three-dimensionalflowswith high Reynoldsnumbers,while at the

sametime Baldwin andLomax [16], aswell asPulliamandSteger[134], demonstrated

similar ideasfor high Reynoldsnumberturbulentflows. The generalreasoningbehind

this schemewasthat the currentcomputationalpowerandmemoryrequirementswould

notallow adequategrid resolutionsin all coordinatedirections,soa dimensionalanalysis

wasperformedon thefull Navier-Stokesequationsto try to eliminateterms.This analysis

showedthatin orderto adequatelyresolvetheviscoustermsalongthebody,@ _ee grid

spacingwouldbe requiredin eachdirection.This levelof clusteringwould requireapro-

hibitivelylargeamountof CPUtime andmemory.In highReynoldsnumberviscousflows,

theviscoustermsweredominatedby thewallnormalderivatives[186], thusthethin-layer

Navier-Stokesapproximationsneglectedallviscoustermsthatwerenot in thesurfacenor-

mal direction. Then,by generatinga body-orientedstructuredgrid, the thin-layer terms

couldeasilyberetainedby eliminatingthetermsin thecoordinatedirection(s)alongthe

body surfacein the viscousflux calculations.This resultedin a thin, viscousboundary

layeraroundthesolid surfacesthatadequatelyresolvedmuchof the viscouseffectsin the

flow, includingseparationpoints,while obtainingresultsin a reasonableamountof time

from thecomputationalhardwareavailable.

Thisresearchresultedin thecomputationalpackagesARC2D andARC3D [132] that

havebeenin usefor manyyears[133, 154]andhavebeenthebasisof otherefforts,see
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references[120]and [149] for examples. Additionally, modeling such effects as thermal

boundary layers and isothermal walls were not explicitly precluded by the thin-layer ap-

proximations, as long as these effects were dominated in the body normal direction (as they

typically were for the cases being studied at the time), however capturing flow phenomena

such as leading edge effects and separated regions was beyond the capacity of this approach

due to the high streamwise viscous stresses present.

Vorticity Confinement

The vorticity confinement technique has its origins in the front tracking schemes, such

as shock capturing methods, that attempt to track a sharp discontinuity by using Lagrangian

elements in a flow field of an Eulerian based solver. The vorticity confinement approach,

developed by Steinhoff and others[51, 58, 73, 112, 155, 156, 185], uses the fact that the

vortical regions, from shed vortices and the boundary layer, in high Reynolds number flows

are very small.

For the shed vortices, a forcing function in the direction normal to the vorticity is ap-

plied to the momentum equations in these regions to convect the vorticity back to the cen-

troid of the cell. This technique has been found to be quite useful for capturing shed vor-

tices as they travel long distances through inviscid flow fields without distorting the original

vortex strength direction.

For the boundary layer regions, a forcing function related to the distance of the cell to

the wall is used to advect the vorticity back to the surface. In order to enforce the no-slip

boundary condition, the domain inside the body and on the surface is forced to have zero

13



velocity.

The currentimplementationsof vorticity confinementhavebeenlimited to uniform

Cartesiangrids andbodyconforminggrids.Attemptsto extendthis techniqueinto more

irregularmeshtopologieshavehadlimitedsuccessbecauseof thedependencyof thecon-

finementparameteron thegrid cell size.Withoutvaryingtheconfinementparameter,Mu-

rayamaandNakahashi[114] foundprematurevortexburstingon a deltawing for anun-

structuredgrid formulation.LShnerandYang[93] haverecentlyattemptedto addressthe

confinementparameterlimitationwith adimensionalanalysisof theconfinementparameter

andhavedemonstratedsomefavorableresults.

This techniqueallowstheuseof muchcoarsergridsto modelhigh Reynoldsnumber

flow fieldsthathavecompactvortices.However,it doesnot captureanyof the detailsof

the interiorof thevortical regionsasit only modelstheseregionsasthin lines. Further,

caremustbe takenin settingthe confinementparameterin order to avoidthe problems

discussedby Dietz et al. [51] wherethe vorticalregionsbecomeunphysical. There is

concern[93] that the vorticity confinement,which is introducedas a force term in the

momentumequations,mightalterthelocalaxialandtangentialmomentum.However,this

is apromisingapproachandwarrantsfurtherstudy.
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Viscous/Inviscid Coupling

The other main technique used to provide approximate solutions to the Navier-Stokes

equations was a technique of coupling an inviscid solver for the majority of the computa-

tional domain with a solver that captured the viscous terms for the regions near the solid

surfaces (or other high viscous regions). The justifications for this technique were similar to

those presented for the thin-layer Navier-Stokes solutions, i.e. high Reynolds number flows

confine the viscous effects to small regions where high gradients occur (such as boundary

layers and shear layers).

Carter [30, 31] and Vatsa and Carter [168], and later Van Dalsem and Steger [162]

as well as Kaups and Cebeci [81], were some of the first researchers to develop the vis-

cous/inviscid coupling techniques for CFD applications. Their solution procedure started

with the development of boundary layer equations for their solver configurations using stan-

dard dimensional analysis techniques which resulted in the familiar boundary layer equa-

tions [186]. The solution procedures for the boundary layer equations mainly focused on

inverse boundary layer algorithms in order to model small separation regions that the direct

boundary layer algorithms cannot handle due to the singularity at the separation point [7].

These equations were typically solved on body-oriented structured grids that captured the

entire boundary layer. For the inviscid calculations, early research focused on solving the

potential equations using body-oriented structured grids that overlay the boundary layer

grids. Later efforts focused on using the Euler equations as the inviscid model [138, 34] as

well as solving the Euler equations on unstructured grids [131 ].
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Modelingtheviscous/inviscidinteractionwasdoneby usingthetranspirationvelocity

concept[162]orbyusingtheboundarylayerdisplacementapproach[34]. Thetranspiration

velocityconceptusedthe velocitycomponentsasameansof vorticity transportfrom the

viscousregionsto the inviscidregions.Thismethodimposedarequirementon theinviscid

meshthatit be fineenoughto accuratelyresolvethevorticity nearthesurface[154]. The

velocitydifferenceswerethenappliedto theinviscidvelocitieswhichresultedin ablowing-

typesurfaceboundarycondition[33]. Theboundarylaverdisolacementannrnnr_h,_1 th,_

inviscid solution to calculate the boundary layer thicknesses and then modified the solid

body geometry in the next step of the inviscid solver to include the calculated boundary

layer thicknesses. It is worth noting that neither the transpiration velocity approach nor

the boundary layer displacement approach paid any significant attention to the thermal

boundary layer effects as this research was mainly focused on the subsonic to transonic

regime.

Drela and Giles [53] extended the viscous/inviscid solution concept by developing

a formulation to handle low Reynolds number flows. Additionally, they strongly cou-

pled the two solution regimes by solving the entire nonlinear equation set via a global

Newton-Raphson iterative method. The resulting code was called ISES (and its succes-

sor MISES [193]) and has been used extensively in aerodynamic design studies such as in

reference [147].
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Navier-Stokes and Cartesian Grids

While the majority of research into Cartesian grids has focused on solving the Eu-

ler equations in two- and three-dimensions, there has been some notable efforts into the

utilization of Cartesian grids to solve the Navier-Stokes equations. These efforts have fo-

cused on either solving the full Navier-Stokes equations using either the immersed bound-

ary methods [64, 110, 128], volume-of-fluid methods [12, 67, 70], reconstruction based

schemes [95, 190] or cut cell based techniques [38, 59, 178] or coupling body-fitted grid

solutions of the Navier-Stokes equations with a Cartesian background grid [13, 21, 48, 55,

79]. The grid coupling technique has its foundations in the idea of the viscous/inviscid

coupling discussed on page 15.

Note that the other early approach to the Navier-Stokes equations was the thin-layer

approximations discussed on page 11 and has found little use in Cartesian grids because the

thin-layer Navier-Stokes approximations relied on the grid being body oriented. Cartesian

grids do not, in general, provide grids that are body aligned, however some work has been

performed applying the thin-layer techniques to Cartesian grids [59]. Hybrid methods do

exist which couple a body oriented grid solving the thin-layer Navier-Stokes equations with

a background Cartesian grid [103].

Immersed Boundary Methods

The immersed boundary method was originally developed by Peskin [128, 129] for

heart valve modeling using the Navier-Stokes equations in two dimensions. The heart
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valvesweremodeledasflexiblesurfacesthatcanpropagatewith theflow,subjectto certain

limitationssuchashingepointsorrigid regionson thesurfaces.Insteadof remeshingthe

computationaldomainasthesurfaceispropagated,thecells thatcontainthesurfacehave

abodyforceaddedto theirmomentumequationsthatrepresentsthereactiveforcethatthe

bodyis applyingto thefluid in responseto thefluid surfacepressureandshearstress.

Goldsteinet al. [64] appliedPeskin'sworkto incompressible,solidbodyflowsusinga

forcefeedbackapproach.In this formulation,thesurfaceforcetakestheform of afeedback

loopfunctionthatactson thesurfaceceil to bringthesurfacevelocityto zeroby adjusting

theappliedforcesappropriately.Thisapproachrequiresanextremelysmalltimestep(CFL

around10-3) in orderfor it to remainstable.

Thesmalltimesteplimitationof Goldsteinet al. wasaddressedin theworkby Mohd-

Yusof [110, 111]. Here, the incompressibleNavier-Stokesequationsare solvedusing

a pseudo-spectralmethod. The appliedbodyforce is developedby utilizing the time-

discretizedNavier-Stokesequationson the surface.In orderto generatea smoothno-slip

boundarycondition,forcesarealsoappliedtothecellsadjacentto thesurface.

In orderto moreaccuratelydeterminetheappropriatesurfaceforcesto addto themo-

mentumequations,Fadlunet al. [57] developeda second-orderboundaryinterpolation

schemefor three-dimensionalincompressibleflowsby usinglinear interpolationto recon-

structthestateinformationatthesurface.Thisapproachresultedin theuseof largertime

steps(CFL around1.5)andbetteraccuracyat the surface.Furtheradvancesby Lai and

Peskin[87] developedsecond-ordermethodsfor movingmembranes.Additionally, Kim et
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al. [82] developedasecond-ordermethodwithbothmomentumandmasssourcesin order

to improvetheoverallaccuracyof theirresults.

While theseschemeshandletheNavier-Stokesequationson Cartesiangrids, they all

sufferfrom numericalstability problemsthattypically requirenumericaldiffusion. Also,

thesurfaceisnot sharplyresolved,andis typicallysmearedbetween2 or 3 cells.This can

causeproblemswhenflow detailsareneedednearthesurface.

Volume of Fluid Methods

Another approach to solving the Navier-Stokes equations on Cartesian grids is the vol-

ume of fluid method. In this method, a scalar transport equation is solved in addition to the

Navier-Stokes equations. The scalar is a value between 0 and 1 that represents the volume

fraction that the fluid (or gas) occupies in that cell. The typical use of this scheme is free-

surface flows, where the scalar represents the amount of the cell that the fluid occupies, and

interfacial flows, where the scalar represents the volume fraction that a species occupies in

the cell.

Hirt and Nichols [70] originally developed this method as part of an incompressible

free-surface Navier-Stokes solver. In order to retain the incompressible invariance in the

transport equation, strict mass conservation was required of the numerical solver. They

also used a first order accurate surface reconstruction technique which causes problems

resolving the interface boundaries.

Ashgriz and Poo [12] were one of the first researchers to develop a piecewise linear

interface construction technique to better resolve the interface boundaries. This is the most
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populartechniquecurrentlyin usefor interfacereconstruction.Almgrenet al. [6] usedthe

volumeof fluid technique,coupledwith afinitevolumesolver,to model the solidsurface

in incompressibleviscousflows. Hendersonet al. [67] andlaterMiller andPuckett[108]

havealsoextendedthevolumeof fluid techniqueto compressibleflows.

Thevolumeof fluid schemestypicallyworkwell whentheinterfacecurvatureis small

with respectto thesurfacemodeling. Otherwise,artificial discontinuitiescandevelopas

well asthe inability to resolvethe small scalefeaturesat the interfaces. Additionally,

withoutaccuratepropagationof thescalartransportequationandsophisticatedschemesto

resolvetheinterfaceboundaries,artificialmixingcanoccur.Finally,problemscandevelop

if thereis nolimiter placedonthescalartransportpropagationto strictly enforcethescalar

valuesin therangeof 0 to 1. ScardovelliandZaleski[145] providea nice reviewof the

applicationof thevolumeof fluid techniquetofree-surfaceandinterfacialflows.

Reconstruction Schemes

Another class of schemes used to solve the Navier-Stokes equations on Cartesian grids

are the reconstruction based schemes. These have been proposed by Ye et a1.[190, 191] and

Majumdar et a1.[95]. These schemes are all based around the idea of interpolating the state

information to the nodes in the computational domain around the surface.

Ye et al. [190, 191] have developed a two-dimensional incompressible Navier-Stokes

equation solver. The solver use the cell merging technique to eliminate any surface cells

that are smaller than 50% of their full size. Then, the state information for the faces of

the new cell are found by utilizing a linear-quadratic two-dimensional interpolation from
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thesurroundingcells.This techniqueresultsina slowconvergenceof thepressurePoisson

equationandrequiresaccelerationtechniques.This techniquehasbeenextendedto moving

boundariesby Udaykumaret al. [161].

Majumdaret al.[95] havedevelopedtwo-dimensional,turbulentReynoldsAveraged

Navier-StokessolveronuniformCartesiangrids.Thissolverusesinterpolationpolynomi-

alsin one-andtwo-dimensionsto reconstructthestateof thecellsthatareinsidethebody.

Thus,thesolutionprocessis performedoveruniformcellsatthesurface.Theinterpolation

processcancausenumericalinstabilitiesduetothenegativecoefficientsthat canarisewith

certaininterpolationpolynomials.

Cut Cell Based Methods

Frymier et al. [59] developed the first work in the application of the full Navier-Stokes

equations on Cartesian grids using the cut cell approach. Their work was limited to two

dimensions and laminar flows. The solution procedure was a straight-forward finite-volume

approach with the Cartesian grids clustered using grid line clustering and not AMR. Their

results demonstrated strong dependencies on the smoothness of the surface grid where non-

smooth surface grids produced non-smooth skin-friction and surface pressure values.

A large number of standard viscous flux formulations for cut cell based schemes were

analyzed by Coirier [38, 39] and Coirier and Powell [40, 41] to ascertain their accuracy

and positivity characteristics. These viscous flux formulations fell into two categories: (1)
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Green-Gaussreconstructionswherethedivergencetheoremwasappliedto cells neighbor-

ing thefacethattheflux wasbeingcalculatedto build the integrationpathand(2) polyno-

mial basedreconstructionsthatuseda Lagrangepolynomialanda setof supportcells to

interpolatethestatevariableswheretheywereneededwith thepolynomialbeingdifferen-

tiatedto obtaintheneededgradients.Thisresearchfocusedon theaccuracyof thevarious

formulationsvia a standardTaylor seriesapproximationanalysisand on the positivity of

theformulations.Thepositivity is ameasureof how well thediscretizationsatisfiesthe

local maximumprinciple that holdsfor all homogeneous,secondorderpartial differen-

tial equations(PDEs). Thelocal maximumprinciplesimply statesthat the solution to a

homogeneous,secondorderPDEat onepointis boundedby the valuesof its neighbors.

It is a statementof thediffusive natureof secondorder PDEs,andthus it is a necessary

requirementfor anydiscretizationof ahomogeneous,secondorderPDE.

Theresultsof this effort werethatall of the schemesdemonstrated(to somedegree)

a competitionbetweenthe accuracyof the schemeandthe viscousstencil positivity for

non-uniformcells, i.e. anyattemptto improvethe accuracy/positivityadverselyeffected

the resultingpositivity/accuracy.Thus, in orderto achievea higherorderof accuracy,a

schememustbeusedthat doesa poor job of preservingthe positivity, and vice versa.

In fact, someof the schemesthatwereanalyzedactuallygrid divergent,demonstratinga

truncationerrorof dY(1).

Theresultingnumericalanalysiswasperformedfor low to moderateReynoldsnumber
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flowsusinga diamond-pathGreen-Gaussreconstructionstencil,dueto its favorableposi-

tivity characteristics,andaquadraticpolynomialinterpolationscheme,dueto its guaran-

teedconsistencycharacteristics.Caseswherethesurfacewaspredominantlyalignedwith

thecoordinatedirectionsshowedexcellentagreementwith theoreticalvalues,butwhenthe

bodywasnotalignedwith thecoordinatedirections(thus,thesurfacehadcutcellsof vary-

ing volumefractionsof theuncutcells)largeoscillationsoccurredin theresultsdueto the

sensitivityof theviscousstencilto thegrid smoothness(for bothcut cells andcoarse/fine

cell interfaces).This explainsthenon-smoothskin friction and surfacepressurevalues

in theFrymieret al. resultsmentionedonpage21. Anotherimpedimentto utilizing this

schemefor highReynoldsnumberflowswasthelargenumberof control volumesneeded

to adequatelyresolvetheviscousregions.Evenwith AMR thisbecameprohibitivelylarge

for evenmoderatelycomplexgeometries[178].

In additionto theviscousflux formulationresults,AMR wasappliedto Coirier'sso-

lution strategieswith a positiveeffect,but withoutfully eliminating the viscousstencil

sensitivityon thecut cell smoothness.Anotherapproachthat wasdiscussedwastheuse

of embedded,bodyorientedgridsto capturetheboundarylayers,butno numericalresults

weregiven.Thistopicof embeddedbodyorientedgridswill bediscussfurtheronpage24.

Delanayeet al. [49] proposedafix to theviscousstencilpositivity problemby using

amodifieddiamond-pathGreen-Gaussreconstructionstencilthatadjuststheshapeof the

stencilto a moreuniform shape.Thestateinformationat thesepoints is thencalculated

by usingalinearitypreserving,pseudo-Laplacianinterpolationalgorithmby Holmesand
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Connell[71]. While this techniquewasappliedto a hybrid grid (a discussionof this type

of griddingto follow onpage28)in two-dimensions,this schemeappearsto beapplicable

to three-dimensional,pureCartesianmeshes.

WangandChen[178]developedaCartesiangrid approachto theNavier-Stokesequa-

tions that attemptedto capitalizeon theanisotropicnatureof theviscouseffectsby cre-

atinganisotropiccells thatcanbe refinedin thedirection(s)thatthe viscouseffectswere

mostdominant.This techniqueworkedwell whenthe directionof the dominantviscous

stresseswerealignedwith thecoordinatedirectionsasin afiat-plate,thin wing, or similarly

shapedbodywherethe majority of its surfaceswerecoordinatealigned. Effectiveuseof

anisotropicrefinementfurtherrequiredthatthedominantflow directionmustbe aligned

with a coordinatedirection(andpreferablyin thesamecoordinatedirectionasthebody).

Whilethiseffortattemptedto solvetheproblemof havingalargenumberof computational

cells,its effectivenesswaslimitedto a smallsetof generalconfigurationsdueto theneed

for favorableflowandbody geometryconfigurations.

Chimera Grid Schemes

The use of a collection of grids to cover the computational domain is known as chimera

gridding. Typically, a body-oriented structured grid is used around each component of

the solid surfaces. Each of these structured grids are then overlayed onto a background

Cartesian mesh. Figure 6 shows an example of a two-dimensional chimera grid collection

around a simple curved surface. Notice that there is no simple mapping of cells in the body

oriented grid and the background Cartesian grid. This feature is one of the drawbacks to
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chimeragriddingschemes,but it is only aperformancepenaltywhenthegrid needsto be

generatedduringinitialization andafteranyAMR processes.
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Figure 6: Example Chimera Grid Near Curved Surface

The development of chimera gridding schemes were not solely founded in the vis-

cous/inviscid coupling problems, but chimera gridding schemes were applicable to that use.

Throughout the history of chimera gridding there have been a number of motivations for

their investigation such as increasing grid point resolution near solid bodies [13], overcom-

ing structured gridding issues associated with modeling complex geometries for the full

potential equation [14, 15, 55, 153] as well as the Euler equations [21, 109, 56], solving

moving body problems [90, 100, 101] and resolving the boundary layers in Navier-Stokes

calculations [78, 79, 180, 181,182].

Atta [13] developed one of the first uses of chimera grids for the full potential equation
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in two-dimensionsusing a finite differenceformulation. A uniform Cartesiangrid was

usedfor thebackgroundgrid anda body-fittedO-typestructuredgrid wasusedaround

thebody. The two grids were coupledviaboundaryinformationexchangesduring the

iterationprocess.First, thesolutionaroundthebodyfitted grid wasconvergedthroughan

outeriterationusingaDirichlet boundaryconditionimposedon theouterboundary.Next,

theoutergrid wasconvergedusinga Neumannboundaryconditionon theinnerboundary,

utilizingthesolutioninformationfromthebodysolution.This informationwasthenusedto

convergethebodyfittedgridonceagain.Thiscyclecontinueduntil thesolutionapproached

steady-state.This procedurerequiredeachgrid (body andbackground)to haveat least

onecompletecell insidethe domainof theother,with the inner grid having anextentof

between1and3chordlengthsin all directions.Significanteffortwasneededto minimize

theoverlappingregionin orderto achieveoptimalperformance.Atta later extendedthis

methodologyto three-dimensions[14] aswellasmorecomplexconfigurations[15].

Stegeret al. [153] developeda finite-differencechimeragrid schemethat could han-

dle a much largervariety of configurationscomparedto Atta's work. While limited to

two-dimensions,theypresentedresultsfor anairfoil-flap, cascadingblades,a non-lifting

bi-planeand an inlet with centerbody configuration. All of theseconfigurationswere

handledautomaticallyby their solverwith little changesto the standardfinite-difference

formulations.Statevariableswereexchangedbetweengridsthroughinterpolationswhich

cancauseperformancepenaltiesin the initializationstageswhentheconnectivityis being

constructed,but theyaddressedthis by usingthe"stencil-walk"searchpattern,wherethe
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cellsthatareusedfor the interpolationof onecell areassumedto becloseto thecellsthat

areneededfor the interpolationof thatcell'sneighbors.

A directextensionto thework of Stegeret al. wasdevelopedby Benek et al. [21],

namedOVERFLOW, which applied chimera grid techniques to three dimensions and arbi-

trary body configurations as well as complete aircraft configurations. Meakin [102, 103]

developed extensions that applied existing AMR techniques to the background meshes

in order to resolve the off-body aerodynamics effects for Euler and Navier-Stokes equa-

tions. Additionally, Meakin developed techniques to apply AMR to unsteady, viscous,

three-dimensional flows. In handling the viscous terms efficiently, the body-oriented grids

were sized to capture the boundary layers, while the Cartesian grids were used for most of

the computational domain. This resulted in an operation count drop of 2.5-6.5 with respect

to the general curvilinear formulations (depending on whether the Euler, thin-layer Navier-

Stokes or full Navier-Stokes equations were used). To further improve the handling of the

viscous terms, the thin-layer Navier-Stokes equations could be used on the body-oriented

grids since they were aligned with the dominant viscous stresses. This work provided

the potential for significant floating point operation count reductions which resulted in an

efficient solution technique. An excellent description of the modeling of a complex config-

uration was performed by Pearce et al. [125] where OVERFLOW was used to model the

complete Space Shuttle Launch Vehicle.

Other interesting applications of chimera gridding was the use of all Cartesian meshes

in the chimera grids by Mitcheltree et al. [109], and the use of multigridding techniques by
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Epsteinetal. [55,56] aswell asKaoet al. [78].

Hybrid Grid Schemes

Another approach that was related to the chimera grid approach was the use of un-

structured grids between the body surface and the background Cartesian mesh, as opposed

to the overlaying of these grids. These schemes were usually referred to as hybrid grid

techniques. Figure 7 demonstrates an example hybrid grid around a curved surface in two

dimensions.

Figure 7: Example Hybrid Grid Near Curved Surface

One application of a hybrid scheme known as SPLITFLOW, by Karman [79] and en-

hanced by Domel and Karmen [52], used Cartesian grids for the majority of the computa-

tional domain, and prismatic grids to resolve the boundary layers. Standard Cartesian grid

cutting techniques were used at the interface between the prismatic grids and the Cartesian
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grid.Theprismaticcellsweregrownfromthesurfacetriangulationusingamarchinglayers

technique[77].Delanayeet al. [49] addressedsignificantdifficultiesthatcouldarisein the

prismatic-Cartesiantechniquenearconvexregions,overlappingregions,andotherregions

wheretheprismaticmarchingtechniqueneededto bemodifiedto createviablegrids. An-

othersimilareffortto SPLITFLOWwasperformedby Wang[180,182]exceptthat instead

of bodyorientedtrianglesor prismaticcells,bodyorientedquadrilateralcellswereusedto

bettercapturetheanisotropicnatureof theviscousboundarylayerregions.

Other Related Method

Similar to the reconstruction method is the class of finite element solution techniques

called element-flee Galerkin methods. Originally developed by Belytschko et al. [20] for

elasticity and heat conduction problems, it is currently being investigated for its applicabil-

ity to fluid dynamics [192] because of its automated handling of grid generation. The basic

premise of this method is the use of polynomial curve fits to approximately represent the

data surrounding the node of interest. Typically, a least-squares error minimization is used

due to the larger number of data points surrounding the node than the number of unknowns

in the curve fit. Most implementations demonstrate oscillations near sharp gradients (espe-

cially with higher-order interpolation functions) with more research needed to developing

effective limiters.

Another scheme related to the reconstruction method that is the gridless method origi-

nally developed by Batina [18]. This method uses a cloud of points to reconstruct a poly-

nomial curve fit (similar to the element-free Galerkin method) using a least-squares error
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minimization.Thesecurvefits arethenusedtocalculatethederivativesrequiredto solve

the Navier-Stokesequationsin differential form. The numberof calculationsper node

is higher thanfor other techniquesdueto thelargenumberof least-squaresfits that are

required.Unfortunately,this schemedoesis notconservativeandrequiresnumericaldis-

sipationin orderto obtainasolution.Otherresearchershaveextendedthis work [91], but

withoutaddressingtheconservationproblem.

Parallelization Efficiency Approaches

Parallelization efforts throughout the history of CFD have been strongly influenced by the

computational hardware available to the researchers. In the early years of CFD, the domi-

nant hardware available to researchers was SIMD (Single Instruction Multiple Data) archi-

tectures. These were also known as vector based architectures, and they used long vectors

of data (with the size depending on the size of the computer's pipeline) and performed the

same operation on each data item in the pipeline in a single CPU clock cycle. Different

operations could be chained together to create an assembly line of operations without hav-

ing to use excess cycles to fill the pipeline caches on each arithmetic unit. Thus, it took

the same amount of time to perform 64 multiplies as it would 1 multiply on a vector ma-

chine with a pipeline size of 64 or larger. While the SIMD architectures provided excellent

parallelization potential on problems with long vectors of data, they became of limited use

to current large CFD applications because of the expensive memory that was required for

these architectures as well as the rise of other less costly architectures [96].
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Themainparallelizationarchitecturesthattooktheplaceof theSIMD architectureswas

theMIMD (Multiple InstructionMultipleData)architectures.Thesearchitecturesutilized

multipleprocessorsto processthedatain parallelusingpossiblydifferent setsof computer

instructionsoneachpiece.Thus,it waspossibleto performtwo independenttasksconcur-

rentlyandnot berestrictedto thevectorparadigmin thealgorithmdevelopmentasin the

SIMDarchitectures.

SIMD Parallelization

Most early CFD work on SIMD architectures, such as [23, 105, 152] focused on achiev-

ing results quickly without quantitative analysis of the parallelization performance. Discus-

sions typically provided wall clock results for the cases demonstrated, but no comparison

was usually offered between scalar and vector runs nor was there any comparison between

various sized pipelines. Heller [66] provided a table of selected timings for common op-

erations on the CDC STAR SIMD architecture that provided useful timing information

for predicting performance characteristics for a given set of operations on a data vector.

References [ 132] and [175] provide additional information about vectorization and how to

prepare code for vectorization.

MIMD Parallelization

MIMD architectures are generally split into two classes depending on the connectivity

used between processors. The first is the shared memory based architectures where all of

the memory is available to each processor in one common address space, shared memory
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architecturesusuallyconsistof anumberof CPUsconnectedto acommonblock of mem-

orythat wasaddressableto all processors.Eachprocessormayalsohaveits own separate

memory(suchasondiecachesormemorymodulesseparatefrom thecommonbanks),but

thatmemorywasnot partof the sharedmemorycollective.Most currentsharedmemory

architecturesprovidea hierarchyof physicalmemorylocationsthe havevarying access

timings suchthatthereis a certainamountof locality associatedwith memoryaccesses.

These._rcbitectures,knownascache-coherentNon-UniformMemoryArchitecturesor cc-

NUMA, requirethe applicationto addressthismemorylocality issuein order to obtain

maximumperformance.Parallelizationin theseenvironmentscanefficientlybeperformed

usingcommonprogrammingtechniquessuchassharedmemorystructuresandlight-weight

threadsto performtheparalleltasksonseparateprocessorswith little overheadinvolvedin

exchanginginformationbetweentheparalleltasks.

TheotherMIMD architectureis thedistributedmemorybasedarchitecturewhereeach

processorhasits own localmemoryaddressspacethatis notsharedwith theotherproces-

sors.Distributedmemoryarchitecturesconsistof acollectionof CPUsthat eachcontain

theirownmemorymoduleswithnodirectconnectivitytotheotherCPUsmemory,andthus

thememoryof anotherprocessoris notdirectlyaddressableacrosstheprocessorboundary.

Thisarchitecturedoesnot allow for simple,efficientimplementationsof thesameparallel

programmingtechniquestypicalof sharedmemoryarchitectures.Specifically,thereis no

simplewayof handlingsharedmemorystructures,nor is thereawayof efficiently spawn-

ingthreadsonseparateprocessorsandkeepingall of theshareddatasynchronizedbetween
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eachprocessor'smemory.Thus,informationto besharedbetweenparalleltasksneedsto

beexplicitly exchangedbetweenthetasksin amuchmorecontrolledandorderly fashion.

Frequently,this ishandledbyusingstandardclient-servercommunicationparadigmssuch

asmessagepassing.

Heller [66] andVoigt [175] providedanexcellentdiscussionof generalparalleliza-

tion schemesthatcouldbeutilized in MIMD architectures,while Venkatakrishnan[172]

,,,-_,,,;,t_d_ninformative,._ectionontheoaralMization issues associated with MIMD archi-

tectures and CFD. Wang [179] provided a comparison of the paraUelization performances

of several systems including Cray T3D and T3E [43] shared memory architectures and

a Beowulf [157, 80] distributed memory system with results that indicated comparable

speedups for all architectures as long as the amount of communication was much less than

the amount of computation.

Parallelization Libraries

In recent years, three major standard libraries have been used extensively in the par-

allelization of CFD applications on MIMD architectures, OpenMP [121,122], MPI [106,

107] and PVM [61]. While all three libraries provide unique benefits, only a comparison

between OpenMP and MPI will be presented.

OpenMP is a parallelization library that was specifically designed for shared mem-

ory architectures. It allows for incremental parallelization of existing applications and

utilizes many shared memory features to optimize its performance (such as shared mem-

ory information exchange, light-weight threads, and operating system level signals and
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semaphores).It providescoarsegrainaswellasfinegrainparallelizationmechanisms,and

it is compatiblewithFORTRAN,C, andC++programminglanguagesonavarietyof hard-

wareandoperatingsystemcombinations.However,it currentlycannot efficiently utilize

distributedmemoryparallelhardwarebecauseof its intricate dependencyon the shared

memoryparadigm.Thusthereis an entireclassqf parallelhardwarethat the OpenMP

basedapplicationscannotsupporteasily.

MPI is aparallelizationapplicationprogramminginterface(API) that is basedon the

ideaof paralleltaskscommunicatingusingeithersynchronousor asynchronousmessage

exchanges.MPI can beusedin both sharedand distributedmemoryarchitectures,and

supportsFORTRAN,C, and C++ programminglanguageson a wide rangeof hardware

andoperatingsystemcombinations.Additionally,MPI doesnotexcludetheuseof a het-

erogeneouscollectionof hardwareandoperatingsystems,thusit allowsfor anextremely

diverseconfigurationto be utilized in a distributedmemoryparallel fashion. However,

theMPI API doesnotspecificallyhandlesuchissuesasbyte-ordering,datarepresentation

differences,or datasizes,thishasto behandledby theapplication. In a sharedmemory

environment,themessagepassingparadigmcreatesanaddedoverheadto theparalleltask

communicationprocessdueto theneedto pack,send,receive,andunpackall information

exchanges.Most MPI implementationsoptimizethe communicationon sharedmemory

nodesby replacingthe send-receiveportionof themessagepassingoperationwith theuse

of acommonsharedmemorycache.Additionally,MPI doesnotprovidethe samelevelof

incrementalparallelizationthat OpenMPprovided. Jespersen[76] providedanoverview
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of themessagepassingschemesneededfor OVERFLOW(alargescaleCFDapplication)

usingMPI.

Shared Memory Based Schemes

There are currently two main CPU-memory interconnection schemes that are used in

shared memory architectures, bus-based and switch-based. The bus-based architecture have

a relatively narrow bandwidth connection between the CPUs that could easily become sat-

urated if too many memory access requests occur. Thus, this architecture is limited in its

scalability. The other type of interconnection is the switched-based architecture. This ar-

chitecture provides more of a matrixed connectivity between the CPUs and the memory

modules, as well as provides multiple paths for memory accesses to travel and reduces

the bandwidth limitations seen in the bus-based approach. Reference [123] provides an

excellent review of these topics. With the increased connectivity speeds of networking

technologies, research into providing a shared memory interface on top of a distributed

memory architecture has been performed, see reference [139] for more details.

The high performance improvements that Aftosmis et al. [2, 3] developed for their

shared memory based CART3D solver, see page 7 for more information, mainly focused

on the preprocessing steps that were performed before the actual solution code was run.

In order to improve the parallelization speedup of their code, they developed a set of cell

reordering techniques that used a concept called space-filling curves [144] to minimize the

inter-process communication due to the domain decomposition. The space-filling curves

also provided an optimal ordering of the data on each node that maximized the on-board
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cacheusageon eachprocessorandwereutilizedin everystageof the multigrid solution

cycle,which createdslightly morecommunicationoverhead,but ensuredloadbalancing

on all multigrid stages.Theothermajorimprovementmadewasa transformationof the

adaptiverefinementtechniquesfromfloatingpointmathematicsto integerbasedmathemat-

ics. This allowedthemto utilize geometrycalculationtechniquesfrom the field of com-

putergraphics[37, 176]toperformthesurfaceintersectiontestsusingonly afew machine

clock-cyclesper test. The overallparallelizationof their codewasdoneusing OpenMR

andits performanceachievedanearlylinearspeedupfor upto 64processors,with parallel

efficiencies(a measureof how efficiently thesolverperformedfor n processors,defined

asEn = _) of approximately 0.9. An excellent summary of these performance im-
nprocs

provements was in references [4] and [22].

Another shared memory based CFD solver was an unstructured, three-dimensional tur-

bulent Navier-Stokes solver developed by Mavriplis [99, 96] that used a Runge-Kutta ex-

plicit time solver in a multigrid algorithm. In addition, directional smoothing and coars-

ening techniques were used to address the stiffness associated with high aspect-ratio cells.

The computational domain was partitioned is such a way as to minimize the inter-grid

data dependencies in the tri-diagonal solver associated with the directional smoothing. Im-

pressive parallelization speedups were achieved for a variety of parallel architectures using

the single grid scheme, including parallel efficiencies of 0.9 for a Cray T3E using 1450

nodes and the ASCI Red machine, with lower efficiencies for V- and W-Cycle multigrid

cases due to the added communication overhead associated with the lower points per node
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distributionof thecoarsergrid.

Sharovet al. [148] developeda sharedmemorybasedCFD solverthat optimizedthe

performanceon cached-basedparallelcomputersby usinga variety of grid partitioning

schemes.In additionto thespace-fillingcurvereorderingmentionedabove,theyalsouti-

lizeda wavefrontrenumbering[92]. Theyalsopaidspecialattentionto theparallelization

of theGMRESpreconditionerin orderto optimizeperformance.Their resultsindicated

thatthesp_ce-fillingcurvesprovidedthebestgrid reorderingwith aparallelefficiencyof

0.5for 20nodesonanSGIOrigin2000.

Distributed Memory Based Schemes

The interconnection mechanisms for distributed memory architectures typically are

done by some type of high bandwidth networking, such as 10 Mb, 100 Mb, or gigabit ether-

net. In addition to the connectivity bandwidth, there are several interconnection topologies

that can be employed. There are fully connected networks where every node could di-

rectly communicate with every other node (which becomes difficult to maintain with large

numbers of nodes), as well as hypercubes and meshes where the nodes are conceptually dis-

tributed in multiple dimensions and then connected to their nearest neighbors (which limits

the connectivity for each node, but can require a large number of hops to traverse the entire

network), and also there are rings and linear arrays where the connectivity to each node

is limited to 1 or 2 neighbors and traversing the network required sequential hops along

the nodes (which is a simple network topology, but created only 1 or 2 paths for com-

munications to travel and easily leads to network saturation). References [123] and [68]
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providemoreinformationon thesetopologiesandadvancesin thedistributedmemoryar-

chitectures.Onefinal evolvingtechnologyis theideaof creatinglow-latencyconnectivity

byprovidinga near-fullyconnectednetworkviamultiplenetworkinterfacecardsat each

node[50].This techniqueprovidesextremelyhighcommunicationbandwidth,butrequired

acomplicatedwiring andnetworkswitchingscheme.

EarlydistributedmemoryresultswerefromDeckeret al. [47].Theyprovidedanexcel-

lentdiscussionof variousparallelizationschemesandtheirefficacyin implicit finitediffer-

enceschemes.Theyinvestigatedseveraldatadistributionschemesfor their parallelization

effortsandprovideda timing estimationfor eachscheme.Theyalsodemonstratedparal-

lelizationefficienciesof 0.9 for block tridiagonalcasesand0.8 for penta-diagonalcases

(bothusing4, 9, and16processors).

BarthandLinton [17] providedanotherearlydistributedmemorybasedparallelization

effort for an implicit, unstructured,turbulentNavier-Stokessolver in three-dimensions.

Thecomputationaldomainuseda varietyof methodsto performan a priori partitioning

of the grid into subdomains that reside on each processor [173]. Their results showed that

the spectral partitioning method provided the best load-balancing, but it required the most

computational time. They used MPI as their parallelization scheme and provided results

for the IBM SP2 [151]. Barth and Linton reported acceptable scalability results up to 64

processors with parallel efficiencies around 0.8 and the total number of iterations required

for convergence slightly increasing as the number of processors increased.

More recent work was performed by Wang that utilized GMRES/multigrid schemes [181 ]
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to improveconvergence,accuracyanddistributedmemoryparallelizationspeedupon an

IBM SP2usingMPI. Wangusedtwo differentdomaindecompositiontechniques,Recur-

siveCoordinateBisectionandRecursiveSpectralBisection[130,150],andconcludedthat

theRecursiveCoordinateBisectionmethodwassuperiordueto its ability to createbetter

load-balanceddomainsquickly at the expenseof producingslightly more interfacecells

betweendomains.Additionally,domaindecompositionoccurredon the coarsestgrid, so

all fincr gridsin the mu!tigfid cyclewererequiredto existon the sameprocessorasthe

parentin orderto eliminatetheadditionalcommunicationoverheadmentionedabovewith

Aftosmiset al. onpage35. Wang'sresultsshowedgoodparallelizationperformancefor

up to 16processors(with theparallelefficienciesof 0.7), at which point eachprocessor

hadfew computationalcells, andthe communicationcostsoverwhelmedtheparalleliza-

tion improvements.Wangalsoprovideda schemefor improvingparallelizationefficiency

by usinga Communicationand ComputationOverlapprocedurethat reorderedthe com-

putationalcellssuchthatthe interior cellswerebeingcomputedwhile theboundarycells

werebeingexchangedbetweenprocessors.Thisresultedin a savingsof 10%to 20%.

Wu andZou [187] provided a distributedmemorybasedparallelizationschemefor

thetwo-dimensionalsteadyandunsteadyEulerequationsusingPVM asoutlinedin refer-

ence[143]. Their work focusedon theuseofoverlappinggridsin orderto independently

solvetheequationsoneachgrid. This requiredtime-laggingof theoverlappinggrids,and

a discussionwaspresentedfor the useof varioustime-laggingschemes.The resulting

schemesproducedreasonableparallelizationefficienciesfor mosttime-laggingschemes,
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with themostconsistentresultsoccurringwhentheentireoverlappinggrid datawasatthe

previoustimestep,asopposedto it beingtwotime stepsbackor only laggingtheimplicit

portionsof theirscheme.

Venkatakrishnan[170, 171]providedanexcellentdiscussionon distributedmemory

parallelizationissuesfor solving the two-dimensionalflow problemsusing explicit and

implicit formulations.EidsonandErlebacher[54] presentedadetaileddescriptionof the

implementationissuesthat resultedfrom solvinga periodictridiagonallinear system(a

commonlinearsystemin CFD)whichprovidedsignificantimplementationdetailsthatcan

beof usefor otherlinearsystemsolvers.

Combined Approaches

One final MIMD parallelization effort worth noting was, a combination of the shared and

distributed memory based schemes. Mavriplis [97, 98] developed a combination OpenMP

and MPI unstructured grid solver [96, 99] based on his research discussed above on page 35.

This scheme utilized MPI communication techniques for distributed memory paralleliza-

tion tasks and OpenMP communication techniques for shared memory parallelization tasks.

This was an effort to optimize performance on shared memory architectures that resided

in a distributed memory network. For the architectures that he evaluated, the MPI alone

and OpenMP alone versions produced similar parallelization results on shared memory ar-

chitectures, and the MPI alone version performed better than the hybrid OpenMP and MPI

version for a cluster of shared memory machines.
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Scope of Current Work

As has been mentioned above, the current approaches to modeling the Navier-Stokes equa-

tions on Cartesian grids have difficulties near the cut cells. Additionally, the requirements

put on the numbers of grid cells needed near the solid surfaces in order to accurately resolve

the viscous effects make the use of traditional solid surface boundary condition treatments

inadequate to efficiently solve the Navier-Stokes equations on full aerodynamic configu-

rations. The grid cell resolution issues also make the use of Cartesian grid schemes on a

single computer unrealistic for full aerodynamic configurations due to the large numbers

of computational cells (1 O's of millions) and the long computational times (hours or even

days) required to achieve a practical solution. Thus a strategy must be developed that ad-

dresses these major difficulties in Navier-Stokes Cartesian solvers if they are ever to gain

widespread use.

This thesis presents two extensions to Cartesian grid solution functionalities. First is

a scheme for modeling the compressible three-dimensional Navier-Stokes equations in a

Cartesian solver by using an interpolation based boundary condition for the surface cells in

order to avoid the non-smoothness associated with the schemes investigated by Coirier [38]

mentioned above. This technique has the added benefit of removing the cut cells from the

time step restriction associated with traditional schemes. The second enhancement is a

distributed memory parallelization port of an existing Cartesian solver in order to utilize

the solver on a larger variety of parallel processing environments.
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TraditionalboundaryconditionapproachesuseTaylor seriesbasedapproximationsof

one-sideddifferencingandno-slipboundaryconditionsfor viscousandheatflux calcula-

tions.Thecurrentresearchutilizesaninterpolationbasedschemewhichutilizestheexist-

ing boundaryconditionsalongwith thegoverningequationsto updatethestatevectorfor

thecomputationalcellsthat areonthebody surface.Thisremovesthe surfacecells from

the finite volumeformulation,andthusremovesthetime steprestrictionassociatedwith

thearbitrarily smallcutcells.It alsoprovidesanaltemativeto thecell mergingtechniques

thatotherCartesianschemesuseto addressthecut celltimesteprestriction.Thisschemeis

implementedwithin anexistingthree-dimensionfinitevolumeCartesiangrid solverwhere

the traditionalsecondordernumericaldifferencesareappliedto the off-body terms,and

thisnewschemeis appliedin thesolidwall boundaryceils.

To addresstheincreasedcomputationalcostsassociatedwith Navier-StokesCartesian

grid solvers, Cartesian solvers need to be able to utilize the growing numbers of inexpen-

sive commercial off-the-shelf distributed memory parallel computing environments. Using

standard networking components and techniques, a high-speed distributed memory com-

putational environment can be created that competes with more expensive shared memory

architectures on certain tasks for a fraction of the costs. If implemented properly, Com-

putational Fluid Dynamics can be one of those tasks, since interprocess communication

(IPC) in parallel CFD is a relatively low bandwidth task. The major effort associated with

utilizing this new parallel environment for existing CFD applications is to take the existing

shared memory parallel codes and convert them to distributed memory parallel codes. By
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isolatingtheIPCtasksfrom theCFDtasksin thecode,identifyingsimilarparallel tasksin

eachparadigmandeliminatingtheusageof techniquesthat areexclusiveto sharedor dis-

tributedmemoryparallelization,anefficientsolverhasbeencreatedthatcanbeutilized in

asharedor distributedmemoryenvironmentwithlittle impactontheoverallparallelization

performance.

In thepresentthesis,ChapterII providesadescriptionof theCartesiansolversthatare

beinginvestigatedthroughoutthis research.A detaileddescriptionof the newly created

CartesiansolverNASCART-GTispresented.This is followed by an overview of the exist-

ing solver, CART3D, with descriptions of the important functionalities and capabilities.

Chapter III provides a description of the new solid boundary treatment for both inviscid

and viscous flows. It starts with a description of the limitations of the current procedures

for viscous flux reconstructions at the solid boundary. It then puts forward an alternative

treatment of the solid boundary cells that avoids the deficiencies associated with the current

solid boundary cell treatments.

The next chapter, Chapter IV, describes the development of the parallelization enhance-

ments made to CART3D. Specific details are given that describe the changes that were

made to the existing code as well as the code additions that were made.

Chapters V and VI provides the results due to these improvements. First, simple ge-

ometry results are presented for inviscid cylinder and viscous fiat plate flows in order to

examine the improvements for cases that have well known analytical solutions. Next, sim-

ple aerodynamic geometries are presented for transonic inviscid as well as subsonic and
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supersonicviscousflowsaroundaNACA-0012airfoil. Thesecasesdemonstratetheeffec-

tivenessof theseschemesfor aerodynamicconfigurationswhichhavewell studiedexperi-

mentalandnumericalsolutions.This is followedby andemonstrationof the effectiveness

of the improvementsfor a transonicinviscidflow overanONERA-M6wing. Finally, re-

sultsarepresenteddemonstratingthe parallelizationimprovementscomparedto existing

sharedmemoryresults,aswell asparallelizationresultsfor adistributedmemoryarchitec-

_.l.re,

Finally, Chapter VII presents a summary of the conclusions obtained from this research

for future development.as well as some suggestions
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CHAPTER II

EXISTING CARTESIAN GRID SOLVERS

A summary is presented of the current functionality of the Cartesian solvers that were mod-

ified in order to provide an understanding of the starting .... _'- "_-'-point iui I.lllb research. ,_._,.1'-'^ t,_v-_r_.,_,

is a well established Cartesian solver used for a number of problems, see [4] and [124], and

provides capabilities of solving 3D, compressible, inviscid flows. CART-GT was devel-

oped recently and provides capabilities of solving 3D, compressible inviscid flows as well

as viscous flows with traditional finite differencing of the viscous terms.

NASCART-GT

NASCART-GT is an unsteady, three-dimensional Cartesian grid solver of the full Navier-

Stokes equations without body forces and a perfect gas thermodynamic model. The Navier-

Stokes equations are solved using Roe's approximate Riemann solver coupled with a MUSCL

data reconstruction technique for the inviscid fluxes and traditional finite differencing of

the viscous terms. In all this creates a second order spatially accurate scheme. The time

integration is performed using a Hancock two-stage predictor-corrector scheme which is

second order accurate in time. In order to accurately capture high gradient regions, a solu-

tion adaption scheme is used that is uses the velocity divergence as the coarsening/refining
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metric.

Governing Equations

The three-dimensional Navier-Stokes equations are the governing equations solved in

NASCART-GT, shown in the integral form in equations (la)-(lc).

O---t p d'_" + p (v. n) dA = 0 (la)
CV CS

fff dF b

CV CS CS CS CV

/g r+r ]- P[dt2+---d-7.r+.C2x(C2×r)+2.C2xv d'F"
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46



With thecomponentsof theviscousstresstensorgivenby
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and h being a height above an arbitrary datum. By allowing no body forces, assuming that

the elevation changes within the flow field are negligible and assuming the control volume

is stationary, equations (la)-(lc) become
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withequationset(2)still holdingfor thestresstensorelements.By definingthestatevector

U

as

equations (3a)-(3c) can be rewritten as

q
Pl

I

pv
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I

.pet]

CV CS

with the inviscid and viscous fluxes defined as
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(5)

(6)

e = CvT h = Cpr y= Cp Cv= _R _ _,R
r- 1 Cp Z-1 (8)
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For calorically perfect gas, the following relationships hold

p = pRT (7)

In order to close the system of equations, a thermodynamic model needs to be used.

The thermodynamic model used in NASCART-GT is a calorically perfect gas model with

the standard equation of state given by equation (7).



Additionally,modelsneedto beestablishedfor thetransportproperties.By assuming

aconstantPrandtlnumberandSutherland'sformulafor theviscositymodel,thefollowing

equationsareusedfor thedynamicviscosityandthermalconductivity,respectively

T3/2

/.t = C 1T + C2 (9a)

k= Cpp (9b)
Pr

where C 1 and C2 are constants for a given gas.

To actually perform the calculations, the equations (4), (5), and (6) are non-dimensionalized

using a characteristic length, l, and the freestream density, p_, velocity, V_, and dynamic

viscosity,/.too. These can be combined to form the Reynolds number Re e = _ The/_ •

following equations are the result of the non-dimensionalization
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pY*

puv* + p*i

_7 = pvv* + p*j

pwv* + p*k
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with the following non-dimensionalizations
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r* x y, y .,,__Z ,'*---t
u _ W

k
e* e It* = l.t k* =

= _ #A_ 7Rp_/Pr
p*= 19 p*-- P T*= T

p_ pZV_ P-/ (P_R)

with the viscous terms non-dimensionalized as

"Cxx 2 l.t* (2au * av* Ow* ).c_- -p_v2 3 Re e \ Ox* ay, az*

, "l:yy 2p* ( Or* au* aw*)Zyy = _ -- 5 Re e 2 ay* ax* Oz*

, ,= 2p* ( Ow* Ou* av*'_"Czz- ?_V_ 3 Ret 2 az* Ox* _]

, ,xy .* (au* av*, 
"C_-- p--_ 2 = _ kay* + ax* ]

• .,/au* aw*)
•xz- o_a - _ t _ + ax,)

5z- p--_2 = E \ OZ* + ay* J

k*VT* - Pr Re e M 2 kVT
p_V2

(14)
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Inviscid Flux Calculations

The inviscid fluxes in NASCART-GT are calculated using the well known Roe's ap-

proximate Riemann solver coupled with a MUSCL data reconstruction technique. More

information about Roe's approximate Riemann solver can be found in references [141,

142, 159], and more information about the MUSCL data reconstruction technique can be

found in references [158, 159].

Roe's Approximate Riemann Solver

In order to accurately capture the physical effects modeled by the fluid dynamics equa-

tions, it is important to discretize the equations in the direction of information propaga-

tion. One method of capturing this phenomena is the Flux Difference Splitting technique

which models the flow phenomena as a collection of local wave propagation between con-

trol volumes, also known as the Godunov approach[62, 63]. Roe's approximate Riemann

solver belongs to this class of solution procedures, details of which can be found in refer-

ences [141,142] with implementation details in [159, 177].

Roe's method provides a method of calculating the flux across a face of a control vol-

ume using the eigenvalues, Xi, the right eigenvectors, K i, and the wave strengths, a i. Equa-

tions (15), (17), and (16) show how the flux is calculated for the an x-face.

Ft+ ½ = _ (F L +FR)-- _., 6:il_ilK i (15)
i:1

where F L is the flux calculated using the left state vector and F R is the flux calculated using
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theright statevectorand

i_ 1 =

with

Ap Ap +/5 _TAu

a-2 _3=/sav _4 = OAw _5 - 2a2

i,4=a i,5= a+a

K3

0

0

1 R4=

i]

0

0

0 K5

1

_+_

+/7_7

(16)

with the average state calculated as

a = V_UL + v/-_uR
,/¢-i+,/N

= V'-&vL+ v/-_Vl_
v'-c-i+v'N

rV= v/-&wL + v/-_Wl_
v'-C-i+ v_

= v'giI-1i.+ ,/N_R
,/-¢-i+v_

fi = V/(7- 1) (/-}- -_ - )

(17)
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Applyingequations(15), (17)and(16)to aCartesiancontrolvolumeresultsin thefollow-

ingformulationfor theflux acrossaface

1
_ = _ (_"L +,_'R + e)

where e = -151

(18)

+t5

0

Au - nxA¢

Av - nyAd_

Aw - nzA? p

For the flux calculation in the x-direction: tp = u, qS = t_, nx = 1, ny = n z -= O, ,._ = F x

and L/R vary in the x-direction. For the flux calculation in the y-direction: q_ = v, t_ -- 9,

ny = 1, nx = nz = O, _._ = Fy and L/R vary in the y-direction. For the flux calculation in the

53



z-direction:_ = w, _ = #, nz = 1, nx = ny = 0, _" = F z and L/R vary in the z-direction.

MUSCL Data Reconstruction

The MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) data re-

construction scheme originated with van Leer [164, 165, 166] introducing a piece-wise

linear reconstruction of the primitive state variable instead of the piece-wise constant re-

construction used in lower order Godunov schemes. The reconstructed data can be plugged

into a flux reconstruction scheme, such as equations (17) and (18) to produce the inviscid

fluxes. Equations (19) and (20) shows a MUSCL reconstruction for the i + 1 face of a

Cartesian control volume.

Wq+½o,,_= Wi,j,k

.}_Ei,j, k

T [(1- If)(Wi,j, k -- Wi_l,j,k) Jr-(1 -1-_)(Wi+l,j, k - Wi,j,k) ] (19)

WRi+½,j, k = Wi+l,j, k

ei,j,k

4 [(1 + _)(Wi+lj,k-- B',,.i,k) + (1- _:)(Wi+2,j, k - Wi+l,.i,k)]

where

(20)
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and Ei,j, k = 0 is traditional first order piece-wise constant and Ei,j, k = 1 is second or third

order (depending on the value of _c). For the Ei,j, k = 1 cases, if _¢ ---- --1 use second order

fully upwind biased scheme, if t¢ = 1/3, then use third order upwind biased scheme, if 1¢=

0 then use second order upwind biased scheme and if _¢= 1 then use second order central

difference scheme. Details about the population of the neighboring cells is discussed on

page 58. Reconstructing the other 5 faces follows in a similar fashion.

The Monotonicity of the scheme is introduced via a limiter that sets the data reconstruc-

tion to first order in regions of high pressure gradients using the following

if APmaxi,j,k <

(22)

0 otherwise

(APi+,Api-,Apj+,Apj-,APk+,APk_, )

f

= I Ein
Ei,j,k

k

where APmaxi,j,k = max

APi+ : Pi+l,j,k -- Pi,j,k'

Apj+ : Pi,j+l,k -- Pi,j,k'

APk+ = Pi,j,k+l -- Pi,j,k,

APi- = Pi,j,k -- Pi-l,j,k

Apj_ = Pi,j,k -- Pi,j-l,k

APk- = Pi,j,k -- Pi,j,k-1

To further enhance stability, l?,i,j, k is set to zero on the cut cells.

creating first order accurate flux calculations in the cut cells.

This has the effect of

Solid Surface Treatment

One final issue related to the inviscid fluxes is establishing the wall boundary condi-

tions. In order to implement the surface tangency wall boundary conditions, the @I flux in
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equation(6) (or thenon-dimensionalizedfor of equation(12)) yields

0

nxp

J_i = nyp (23)

nzp

0

since Vwall.nwall = O, with p being found by satisfying the non-curved wall boundary

condition _ = 0.

Viscous Flux Calculations

The viscous flux calculations are split into two types, the simpler flow cell formulation

and the more complicated solid surface cell formulation. The viscous flux formulations are

simplified by the Cartesian nature of the control volumes, with more attention needing to

be paid to the surface treatment.

Flow Cells

The viscous flux calculations of the flow cells are performed using standard second

order finite difference approximations. The difference stencil is populated such that at

refinement boundaries the differencing still appears as a uniform sized grid, which results

in a less than second order accuracy for these regions. Page 58 provides more details on the

stencil population. Since all of the flow cell faces are coordinate aligned, a large number of

viscous terms do not need to be calculated in the @v" n term from equations (5) and (6).
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Solid Surface Treatment

The solid surface treatment of the viscous flux calculations requires the decomposition

of the control volume velocities into surface oriented directions. To calculate the viscous

fluxes for the surface face, a local coordinate system is defined such that r/is normal to the

surface and _ and 5 are perpendicular to each other and are along the surface in order to

form a right-handed orthogonal coordinate system (the actual directions of _ and 5 are not

important as wi!! be shown later).

The transformation of the x-, y- and z-derivatives into _-, 7/- and 5-derivatives is

o a_ o 077o o5 o
- + Jr

Ox Ox O_ 0x077 0x o35

a o_ a 077o o5 o
- + +

O3Y 03Y°3_ _?Y °371 O3YO35

03 _03_ 03 +077 O3 __O35O3
Oz 03z0_ 0z071 O3zo35

(24)

For all quantities that do not vary on the surface (i.e. velocity, temperature in isothermal

0
wall conditions and thin-layer Navier-Stokes approximations to temperature field) the

and _ terms are zero, and the transformation reduces to

O 03

Ox - n:cg-rl

03 03

o3y -- ny 0377

8 03

Oz- nz-g-o

(25)

noting that -_x, -_y and -_z are just the slopes of the normal vector from the surface to the

cell center: nx, ny and nz.
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Tofind thex-, y- andz-distancesfrom thesurfaceto thecell center,astandardformula

canbeusedthatfinds theshortestdistancebetweena surfaceanda point, see[74], to get

thefollowing values

a .Xc - d
nx- a 0

a.a

a.xc-d
ny -- a 1a.a

a.xc-d
n z -- a 2

a.a

(26)

where a. x - d = 0 is the equation of the surface and Xc is the cell center. From equa-

tions (25) and (26), the viscous fluxes on the surface can be calculated.

Numerical Stencil Population

In order to calculate the inviscid and viscous fluxes, a numerical stencil must be con-

stmcted such that the necessary neighbor information can be determined. NASCART

firsts determines the state vectors on the same mesh as the local cell and then performs

a uniformly-spaced finite difference approximation to calculate the fluxes. With the possi-

bility of mesh refinement in the grid, there are three grid configuration possible, a locally

uniform grid, a local grid with fine neighbors and a local grid coarse neighbors.

The simplest case is that of a locally uniform grid, Figure 8. For this case no special

treatment is required and the state of the neighboring control volumes, can be used as is.

The label 'X' is used to denote the location of the needed state information.

For the case of the local grid having fine neighbors, Figure 9, the state information of the

fine neighbor, labeled as 'o', is averaged together to create the required state information.

58



Ui_ 1 U i Ui+l Ui_ 1 U i Ui+ 1

x,x x i

Figure 8: Uniform Stencil Population Exam-

ple

Figure 9: Fine Stencil Population Exam-

ple

The final case is where the local grid has coarse neighbors, Figure 10. For this case,

the state information for the coarse co_ntro! volume is used as the state infom,_ation at the

desired locations. This reduces the local accuracy of the scheme, but also provides more

dampening for any instabilities.

Ui_ 1 U i Ui+ 1

o

fl

Figure 10: Coarse Stencil Population

Table 1 shows the stencil sizes for various schemes using this approach.

Table 1" Stencil Size for Each Face

Scheme 2D 3D

first order Euler 2 2

second order Euler 4 4

first order Navier-Stokes 6 10

second order Navier-Stokes 8 12
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.Time Integration

The time integration within NASCART is performed using a standard 2-stage Hancock

integration scheme, with implementation details provided in reference [159]. Using the

semi-discretized form of equation (5) results in the following

vn+_ = U_,j,k - 1 n ffi,j,k - Ati,J,k .n dA (27)
CSi,j,_

un+lun+ _n g( )i,j,k i,j,k -- i,j,k d:'_7+½ __ _-n+½
D n dA

CSij,k

where evaluation of the surface integrals will be discussed on page 61. Notice that the invis-

cid and viscous fluxes in the corrector steps are calculated using the state vectors generated

from the predictor steps, and that local time-stepping can be employed if the steady-state

solution is only desired.

Solution Adaption

The solution adaption methodology used in NASCART is similar to the velocity diver-

gence approach discussed by Tu [160] where for each control volume, the velocity diver-

gence is scaled by a characteristic length of the control volume to obtain a measure of the

changing flow properties from cell to cell via

3

_di,j, k = IV. vi,j,kll_j,k (28)

where l is the cube-root of the cell volume.

Next the root-mean-square is calculated over the entire computational domain to obtain
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a reference value, rrd, using

1 N

i=1

(29)

Finally, cells are flagged for coarsening or refinement if the following conditions apply

where kc and kr are threshold values for coarsening and refining, respectively.

(30)

Putting It All Together

Finally, the surface integrals in the Hancock time integration scheme (27) can be re-

placed with

ff ("_I -- °_V ) "It dA ,_ ( _I - °_v ) i+ l /2,j,k A li,y,t - (°_I -- _v ) i-1/2,j,k Z2i,y,k

CSi,j,k

q-(_'l--_._V)i,j+i/2,kA3i,j,k--(:l--_'V)i,j_i/2,kA4i,j,k (31)

-b (_'1 -- _'V ) i,j,k +l/2 A5i,j,k -- (,_1 -- o_"v ) i,j,k_ l /2 A6i,j,k

-t-(_'Iwatt--_'Vwau)Awalli,j,k

where A 1 is the area of the xmax face, A 2 is the area of the xmin face, A 3 is the area of the

ymax face, A 4 is the area of the ymin face, A 5 is the area of the zmax face, A 6 is the area

of the zmin face and Awall is the area of the wall face (if the cell has one). Combining all

of the above results in a scheme that is second order accurate in time and between first and

third order accurate in space.
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CART3D

CART3D is an explicit, finite volume Cartesian grid solver of the three-dimensional Euler

equations that has been validated in a number of flow conditions and configurations [3,

4, 22]. CART3D originated from the research of Melton et al. [105]. Improvements to

the grid generation schemes, geometry representation and flow field refinement techniques

were later performed by Melton et al. [104]. An overhaul of the flow solver to include

multigridding, shared memory parallelization and CPU cache-based performance enhance-

ments were performed by Aftosmis et al. [3].

Solver

The solver portion of CART3D, called flowCart, uses a face-based data structure for the

spatial integration techniques. Within each control volume a piecewise linear distribution

is used for the state variable reconstruction for the flux calculations to produce a second

order scheme. A least-squares procedure provides the gradient estimations within each

cell which is based on the solution of the normal equations of the local mass matrix. Flux

quadrature is performed by a midpoint integration coupled with either a van Leer flux-

vector splitting [9] or an approximate Riemann solver of Colella [42]. In order to suppress

the oscillations associated with higher order schemes, flowCart uses either the rninmod flux

limiter [159] or Venkatakrishnan's flux limiter [169].

In handling the temporal discretization, flowCart employs a modified Runge-Kutta ex-

plicit time-stepping scheme. It supports an arbitrary number of Runge-Kutta stages with the
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numberof stagesandthecoefficientsuserconfigurable,with thevanLeer 3-stageandvan

Leer5-stageoptimally dampenedschemes[167] thetypical schemesusedto get second

orderandthirdordertemporalaccuracy,respectively.

Tofurtherimprovetheconvergencecharacteristics,flowCartusesaFull Approximation

Storage(FAS)multigrid scheme[26] basedon the work of Jameson[75] to accelerate

theconvergenceof the solverusingbothV- and W-cyclesaswell asFull Multigrid V-

cycles.Theintergfidt,-,,,o¢o,-occursby _,.,,,,tiLJj_,tiUlliui tll_ l_btlll.;I.lOIl pnases and linear

interpolation for the prolongation. A local block Jacobi preconditioning on each control

volume is possible in order to further accelerate convergence. The combination of the

upwind spatial discretization and the preconditioning results in rapid convergence for the

FAS multigrid scheme.

Grid Creation and Partitioning

A major focus for CART3D was the issues related to grid creation and partitioning.

Efforts were made to improve the performance characteristics of the grid generation pro-

cedures. Surface cells are constructed using techniques originating in the field of computer

graphics in order to quickly and efficiently process surface intersections with the Cartesian

grid. Additional techniques are employed in order to ensure the accurate representation of

the surface geometry in the grid. Also, efforts are made to increase the solver performance

by optimally ordering the control volumes as well as by finding acceptable distributions of

the control volumes over the parallel nodes to achieve excellent load-balancing. The result
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is a grid generationperformanceof lxl06 cells/minuteona moderatelypowereddesktop

workstationin 1997[3].

In the grid generationprocess,the flow cellsarestoredasthe cell centroidand re-

finementlevelsothatthecompletegeometrycouldeasilybe recreatedwith theadditional

informationof the initial grid distribution.Forthecut andsplit cells, they arehandledas

an arbitrarily shapedpolyhedrawith the centroidof thecell being storedaswell asthe

_urfacetriangulationof thecut surface.Additionally,eachgrid location is convertedfrom

a floatingpointrepresentationto an integerbasedrepresentationby usinga 64-bit integer

for storingall threecoordinates.Thuseachcoordinatehasto berepresentedin 21-bits,re-

suitingin amaximumrelativeresolutionof 2-21_ 4.8x10-7 in eachcoordinatedirection.

This integerbasedaddressingallowsfor very fastgeometrycalculationsduring the grid

generationprocess.

Vv-niiethe surfaceceils accountedfor only _' (N2) cells, and the flow cells account

for 6' (N 3) cells, special attention is paid to efficiently addressing the surface cells in order

to optimize performance without sacrificing accuracy. By using the integer based coor-

dinates, intersections of control volumes and surface triangles are determined using the

bitwise "and" (&) and "or" (]) operators. The coordinates of each cell is relative to the cell

that is being tested for the intersection. Each vertex in the triangle is given an index that

corresponds to the cell that it is in. If any of the sides of the triangle intersect an edge of the

cell, then the triangle is intersected. The intersection test for a cell is given in equation (32).

This results in an extremely fast algorithm since equation (32) typically takes 3 CPU clock
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cycles(onefor eachbitwise operation)comparedto themanyCPUclock cyclesrequired

for floatingpointarithmetic.

if (facecodej & (coordvI I coordv 2 Icoordv3) # 0) then intersect (32)

Figure 11 shows a example of the intersection test configuration in two-dimensions. Thus

for/_tuv, the coordinates for the vertices are coord t = 0000, coordu = 0000 and coordv =

0100. The facecode parameter is the coordinate of the cell adjacent to each face, thus for

the face that intersects with Atu v, the facecode is 0100. Plugging these values into 32

shows that only facecode of 0100 produces a non-zero result, and it is the only edge that

intersects the triangle. More details on this technique can be found in reference [3].

1001 ]

1000

1010

0001 0101

Figure 11" Example Surface Triangle Intersection with Cartesian Cell

In handling the surface triangles that intersect the Cartesian cells, the surface normals

are used to determine if further grid refinement is needed. This is done by evaluating the

change in angle of the surface normals for the surface triangles that intersect a cell, if the

changes are above some threshold then more refinement will be required. Also, CART3D

could use all of the intersecting surface triangles during the solution, or it could agglomerate
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all of the surfacesinto oneareaweightedaveragenormalwith a surfaceareaequalto the

sumof eachtrianglessurfacearea.This functionalityrequiresfewercalculationsduring

thesolution,whilenot adverselyimpactingtheresults.Figure12showsanexampleof the

surfaceagglomeration.Noticethatthereare3sub-surfacesto thecut surfacewith normals

nl, n2andn3 thatgetagglomeratedinto onesurfacenormalnagg,while the surfaceareas

for all flow calculationsandcell centroiddeterminationsusetheareasof thethreeoriginal

surfaces.

nl

n 3

n agg

Figure 12: Example of Surface Agglomeration

Another grid technique that aids the solution process is the use of space-filling curves [144],

or SFC, to generate the indexing of the cells. An effective SFC encourages better data

locality for neighboring cells which results in better cache-based performance. The two

orderings that Aftosmis et al. used were the Peano-Hilbert (or U-ordering) and the Morton

(or N-ordering) schemes. Figures 13 and 14 show examples of Peano-Hilbert and Morton

SFCs. Aftosmis et al. identified three characteristics that made these space-filling curve

useful as a re-ordering technique [3]:

1. Mapping 2 d _ _ : Both ordering schemes provided unique mappings between

the _d physical space and a one-dimensional hyperspace, 3f _.
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2. Locality : The U-orderingmaintainedadjacencyof neighboringcells in the map-

pingbetween_d and,_, while theN-orderingmostlymaintainedthe adjacencyof

neighboringcells.

3. Compactness: The encodinganddecodingof bothorderingsrequiredonly local

informationto generatethehyperspaceindexingfrom thephysicalspacecoordinate

andviceversa.

7n r J7 Fq2_J I I "J
L I L_ ]"7 F ] F-

/ L I L

L] LI
-I F F7

Lid L__J I

Figure 13: Example of Two-Dimensional Peano-Hilbert Curve
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Figure 14: Example of Two-Dimensional Morton Curve

To generate the Peano-Hilbert curve in Figure 13, the template curve (the left curve) is

recursively applied to every line segment such that starting and ending segments have the
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templatecurveappliedto the insideandthetwocomersegmentshavethe templatecurve

appliedto theoutside.Themiddleandright curvesof Figure13showsuccessiveiterations

of thePeano-Hilbertcurve.Extendingthis to threedimensionsis donein asimilar manner

usingthetemplatecurveshownin Figure15.

Figure 15:Exampleof Three-DimensionalPeano-HilbertCurve

To generatetheMorton curve in Figure 14,eachquadrantis given a two-bit index

representingthe x and y location. Thusthelower left quadrantis 00, the upper left is

01, the lower right is 10 andthe upperright is 11. The Morton curve is generatedby

traversingthe quadrantsin orderof their two-bit index. Figure 14showsthreelevelsof

iterationsof theMortoncurve.Extendingthis to threedimensionsis donesimilarly to the

twodimensioncaseexceptthattheoctantsarerepresentedby athree-bitindexrepresenting

thex, y andz locationsasshownin Figure16.

Usingthespace-fillingcurvesastheorderingmechanism,Figure 17showsanexample

mappingof a two-dimensionalphysicalspacedomainwith mixedlevelsof refinementto

aone-dimensionalhyperspaceusingthePeano-Hilbertorderingandthe integerbasedcell

locationscheme.
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011 111

100

Figure 16: Example of Three-Dimensional Morton Curve

Handling of the domain decomposition for the parailelization of CART3D is done by

simply splitting the SFC ordered cells evenly between the the processors, as shown in

Figure 17. With the use of the SFC ordering, Berger et al. demonstrated that the resulting

partitioning created roughly similar numbers of overlapping cells as did a perfectly uniform

Cartesian mesh with the same number of cells [22]. In order to maintain favorable load-

balancing characteristics, extra weighting is applied to cut and split cells in order to account

for their higher computational cost. Thus partitions with a larger number of cut or split cells

will have a lower overall number of cells.

CART3D uses a single pass scheme to create the grids for the multigrid solver. The

procedure for coarsening the computational domains starts with the finest grid. This grid

is then indexed using one of the SFCs mentioned above. At this point, the coarser grid

levels of the multigrid solver can be created by a cell-by-cell traversal of the grid since the

finest grid is already reordered. This results in the coarse grids retaining the SFC ordering.

The grid coarsening procedure imposes a limit so that there is at most a refinement ratio

of 2:1 on any grid. Thus some cells will not coarsen in the multigrid strategy until all of
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Figure 17: Two-Dimensional Mapping from Physical Space to Hyperspace

its neighbors have been coarsened. Finally, each grid is partitioned out to each processor

using the SFC indexing in order to improve the overall load balancing characteristics of the

solver. Figure 18 shows an example of one stage of coarsening around an arbitrary surface.

Special attention is paid to coarsening cut cells and split cells in order to handle the

various coarsened grids that can result. Figures 19 and 20 show examples of the coarsening

that can result around cut and split cells. Figure 19 shows 4 cut cells that coarsen to 2 cut

cells, and Figure 20 shows 2 full cells and 4 split cells that coarsen to 2 cut cells. These are

just two examples of the many variations that could occur during the coarsening process

around cut and split ceils.

The overall coarsening ratio, the ratio of fine cells to coarse cells in one coarsening

70



55

56

6 7 10 11 22

5 8 9 12 21

4 3 14 13 20

23

25

24

19

26

1 2 15 16 17 18

Figure 18: Grid Coarsening Around Arbitrary Surface

Figure 19:4 Cut Cells Coarsen to 2 Cut Cells

step, for the CART3D coarsening procedures was shown to approach 7.25:1 for a vari-

ety of geometries [4] (noting that for a three-dimensional computational domain a perfect

coarsening ratio would be 8:1). Also, this coarsening procedure was shown to be extremely

fast, taking @ (NlogN) steps to complete due to the quick-sort that occurs after the SFC

indexing.
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Figure 20:2 Full Cells and 4 Split Cells Coarsen to 2 Cut Cells

Accuracy and Performance

A T"JrT_"_I "_ ....... 1-" .,1 _- -1 - - - ? .... 1 ,1,_,_,,,l .,_ wa_ vmmatvu agmnbt or)in known analytical solutions as well as existing ex-

perimental data. Using the Supersonic Vortex model problem [5], Aftosmis et al. demon-

strated a global order of accuracy of 1.88 [4] which compared favorably with other com-

putational models. Additional validation was performed comparing results for an ONERA

M6 wing in transonic flight conditions against experimental data with CART3D demon-

strating all of the pertinent flow characteristics [4] as well as good agreement with pressure

ct)emclent aata.

CART3D uses OpenMP for its parallelization functionality with its parallelization per-

formance showing excellent speedup results for up to 64 processors, with speedup figures

of 28.4 and 52.3 for 32 and 64 processors, respectively [4, 22]. For all parallelization

results, the residual histories for any number of CPU cases all matched to within machine

accuracy due to the explicit nature of the time-stepping scheme and the lack of any iteration

lagging in the updating of the overlapping cells [3].

The performance of the multigrid functionality of CART3D demonstrated a 5-times

decrease in computation work to reduce the residual to machine zero for the test cases
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mentionedabove[4]. The parallelizationperformanceof themultigrid functionality was

not asgoodasthesingle-gridsolutionssincethecoarsergridshad smallerratiosof flow

cellsto overlappingcells.
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CHAPTER III

SOLID BOUNDARY TREATMENT

The current schemes for calculating the solid-surface viscous boundary conditions all de-

pend on calculating the wall shear stress and heat flux via numerical differences within the

numerical solver in order to accurately calculate the numerical differences. This has been

shown by Coirier [38] to produce extreme oscillations near the cut cells for even simple ge-

ometries due to the non-positivity of the stencils used in several viscous flux reconstruction

techniques. In order to avoid these problems, the proposed approach uses special treatments

for the solid boundary cells to provide a method of solving the Navier-Stokes equations on

Cartesian grids. In addition, this scheme can be used to solve the Euler equations in order

to eliminate the cut cells from the integration scheme and thus removing them from the

time step restriction.

Existing Solid Boundary Treatment

The existing research into applying the Navier-Stokes equations to Cartesian grids, such as

Frymier [59] and Coirier [38, 39], have utilized techniques to reconstruct the solid boundary

fluxes in combination with the no slip wall boundary condition to model the solid boundary.
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Frymierusedsimpleextrapolationto obtainthewall pressure,with linear andquadratic

curvefits for thevelocity profilesto obtainthestresses.Tomodeltheheatflux at thewall,

adiabaticwall boundaryconditionsweretheonlyboundaryconditionsstudied.

Like Frymier,Coirier usedanextrapolationtechniqueto obtainthe wall pressure,but

useda flux reconstructiontechniqueto obtainthewall stressesusingthewall centroidand

theintersectionpointsof thecell edgeandthesurface.For thewall heatflux boundarycon-

dition, an isothermalwail boundaryconditionwasusedwith a onesidedfinite difference

basedderivative.

As wasdiscussedin ChapterII, the CartesiansolverNASCART-GT originally de-

terminedthe wall pressureby satisfyingthenormalmomentumequationfor a flat wall,

ap = 0, as well as a one sided finite difference formulation for the wall stresses and heat
dn

flux.

Unfortunately, all of these techniques produce unsatisfactory results when the result-

ing computational domain contains cut cells. As an example, while Coirier demonstrated

excellent agreement with the Euler Cartesian grid solver, even simple fiat plate Blasius

configurations proved difficult to accurately capture when there were cut cells in the com-

putational domain. Coirier's results for a Blasius fiat plate configuration, grid shown in

Figure 21, at Re = 10,000 with the plate at an angle of 30 ° with respect to the x-axis

show large oscillations in the skin friction coefficient, shown here in Figure 22. This non-

smoothness problem was observed in Frymier's work as well as in NASCART-GT, and

it makes these solid surface boundary condition formulations of little use when general
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bodiesneedto bemodeled.
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Figure 21: Grid from CoMer [38] for Ro-
tated Blasius Flat Plate

Figure 22: Skin Friction Results from

Coirier [38] for Rotated Blasius Flat Plate

In addition to the non-smoothness problems associated with the existing solid boundary

treatment, the cut cells generated by the solid surface intersecting with the Cartesian cells

require very small time steps to maintain the CFL restriction needed to ensure the stability

of the explicit time integration scheme. Thus to achieve solutions more efficiently, this time

step restriction needs to be eliminated so that the minimum time step is set by the size of

the smallest full cell.

New Solid Boundary Treatment

After reviewing the existing solid boundary treatments above, it becomes apparent that

there needs to be a new treatment for the solid boundary condition that addresses the non-

smoothness problems as well as the CFL restrictions associated with the cut cells. The new
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approach presented addresses these problems by handling the solid body cells separately

from the rest of the computational domain.

Basic Model Development

The problems associated with the non-smoothness of Navier-Stokes using Cartesian

grids can be traced back to the non-positivity of the viscous flux stencil [38], thus a scheme

..... ._,:_ .u_ _,,_ _u_ac_ c_u_ wlmout using tuc viscous flux stencils needsLu_ upuatu_ mc state of "" .... _e..... ,, .... ,., .......

to be used. One method of removing the dependence on the viscous flux stencils is to

remove the surface cells from the finite volume formulation, while still using them for the

flux reconstruction of its neighboring cells. The development of the state vectors for the

surface cells can be obtained by satisfying the known criteria for the surface cells. Thus

allowing the calculation of the majority of the control volumes in the computational domain

to remain unchanged and can be treated as was discussed in Chapter _.

Reference State Determination

The formulation of the surface cell properties utilizes the state at a point normal to the

surface which can be based on the surrounding cells, see figure 23. The state at point 'c' is

constructed either directly from the state of the cell containing point 'c' (in this Case labeled

'5'), or by using a distance weighted interpolation of the of the surrounding cells (in this

case cells '1' through '9'). The distance weighted interpolation places a restriction on the

cells surrounding the surface cell such that all of the cells neighboring the reference cell

and the reference cell itself must be at the same refinement level as the surface cell.
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Using the state at point 'c', the state at the centroid of the surface cell, labeled '9', (or

the wall location, labeled 'w') can be developed by using one-dimensional relationships

along the line B---_.The specifics of the state reconstruction depends on whether the flow is

inviscid or viscous.

1 2

4 _ 5

7 8

3

6

Figure 23: Example Configuration for Solid Boundary Treatment

Inviscid Formulation for Flat Wall

The inviscid formulation is separated into two cases, one if the flow at point 'c' is

subsonic and another if it is supersonic.

Subsonic Case The surface cell velocity is first determined by an interpolation procedure

along the line Bw from point 'c' to the wall utilizing the surface tangency wall boundary

condition. The resulting relationship is
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where6c and t59 are the distances from point 'w' to points 'c' and '9', respectively. This

has the effect of holding the tangential velocity constant and linearly decreasing the normal

velocity to zero at the wall.

With the velocity determined at point '9', the temperature can be found by using the

adiabatic relation

"/-1U_
Tg=To 2Cp

(34)

and the pressure can be found by using the isentropic relation

._.L_

p9=Po(1--l-_gla2) 1-_'
(35)

This has the effect of correcting the thermodynamic properties for the velocity changes

associated with the wail conditions.

Supersonic Case The supersonic case is split into two separate cases, one if the wall

angle produces a shock and the other if it produces an expansion (or is parallel to the

flow). If the wall produces a shock due to a positive wall angle, then the following standard
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obliqueshockrelationsareused,see[8] for thederivations

Mn,c = Mcsin/3

(r+I)ML
P9 = Pc ('y-1) M_n,c+ 2

[ 27 M2 1p9=Pc l+_-f(n,c--1)

2

M2,9 M2'c+'f -1
-- 2 2

r_--fM_,c - 1

P9 Pc
Tn,9 = Tc

Pc P9

M 9 = Mn, 9 csc (/3 - O)

(36)

[ Mc2sin2 /3-1 ]
tan0 = 2cot/3 [Mcc-_-_)- + 2J

where/3 is the oblique shock angle and 0 is the wall angle. One additional correction is to

the velocity magnitude at '9'. The subsonic formulation from above is is used to calculate

L,_ velocity direction at _, and the velocity magnitude from the oblique shock relations is

used for the final velocity magnitude.

If the wall angle produces an expansion (or is parallel to the flow) then the same sub-

sonic velocity relations are used to calculate the velocity vector. To calculate the thermo-

dynamic properties, the standard Busemann surface pressure coefficient relation, see [25],

is used to determine the pressure by

2 0
+

P9 = Pc + @Cp

(y+ l)M2c -4M2c +4 02

2(M'_c - 1) 2
(37)

From the isentropic relations, the temperature at '9' iswhere again 0 is the wall angle.
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calculatedfrom

12 P0 r

M_-TZ 1 -1

r9=

Viscous Formulation for Flat Wall

(38)

As with the inviscid case, the viscous formulation is separated into two cases, one if the

flow at point 'c' is subsonic and another if it is supersonic.

Subsonic Case The surface cell velocity is first determined by an interpolation procedure

along the line Bw from point 'c' to the wall utilizing the no slip wall boundary condition.

The resulting relationship is

U9= [Uc__(I__ _9_(ttc.n)_n] (_9_ (qO,

where 6c and 69 are the distances from point 'w' to points 'c' and '9', respectively. This has

the effect of linearly decreasing the tangential velocity to zero and quadratically decreasing

the normal velocity to zero at the wall.

Next, the pressure at point '9' can be determined by using the normal momentum equa-

tion for a flat wall to get

Dd

----c-_= 0 (40)
dn

which when used in a first order forward finite difference approximation yields

P9 = Pc (41)
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To closethethermodynamicsystemandenforcethefinal wall boundarycondition, the

temperaturefor thesurfacecell is determined.Foranadiabaticwall boundarycondition,a

first orderfinitedifferenceformulationfor thewall heatflux yieldsthesimplerelation

T9 = Tc (42)

While for the isothermal case, a simple linear interpolation along BW, similar to the veloc-

ity formulation shown above, yields

r9= grc+ - (43)

Supersonic Case The supersonic case should be a pathological case since the wall cell

must be in the boundary layer (thus subsonic), but it is applicable when the solution do-

main is initialized using the freestream values. If the wall angle produces a shock then the

ellhCnnlo ,ulconlle ,7ol_c,;t-_T f,-_,_,,1,_-; ...... A tll_ V_lUGIty tllrectlon....................... ., ........... ,_,. is ,,_u to detern-ane "- ........... and the

oblique shock relations are used to calculate the velocity magnitude and the thermodynamic

conditions. Otherwise, the viscous subsonic formulations are used.

Curved Wall Model Development

While the basic model does address many of the problems that have been mentioned

above, some deficiencies of the basic model have been addressed with the updated model.

Specifically, utilizing the surface curvature to ease the grid refinement criteria around re-

gions of high curvature, and utilizing the governing equations to develop the interpola-

tion relationships. The surface curvature modification requires the governing equations
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to be transformedinto geodesiccoordinatesin orderto incorporatethe surfacecurvature

terms.AppendixA providesthe derivationdetailsassociatedwith the full Navier-Stokes

equations,theboundarylayer equationsandthe Eulerequationsin both two- andthree-

dimensionsfor geodesiccoordinates.

Surface Curvature Determination

The geode.qic coorctinzt_ clir_oticmc, _, T/ _,,A _ .,_,_A to be a.._.._ for --_'- --J .......

so that the transformed governing equations can be used. Next, the necessary curvatures

need to be calculated. Finally, the local velocity vectors need to be transformed from the

Cartesian coordinate system to the geodesic coordinate system and back. The following

sections provide the details for each of these steps.

Defining Geodesic Coordinate Directions In order to use the governing equations de-

rived in Appendix A, the geodesic coordinate system for each panel must be determined.

Recall that the _-and _'-directions are along the surface, while the 77-direction is normal to

the surface. Further, recall that the surface is represented by a collection panels that can

each be described by their unit normal vector, n, and the location of the centroid panel, Xc

in the following equation

n.(x-xc) =0 (44)

Thus, the r/-direction is simply the surface normal. The definition of the _-direction is

the freestream velocity vector, Uoo, projected onto the surface. This is done so that the _-

direction is the primary flow direction for most of the surface panels. For the panels that
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areperpendicularto theflow direction(i.e. n 11U_), then the q-direction is taken to be

the direction of an edge of the panel (e0). The definition of the F-direction is such that

it is normal to the other two directions to form a right-handed system. Thus, the three

coordinate directions are defined as

, if n II U_;r_ =- U®-(n.U.)n

iV _(n.V_)nL, otherwise.

_rl = n (45)

Curvature Calculation Point Selection With the coordinate directions defined on the

surface panels, the local curvatures can now be calculated. Figure 24 shows a typical three-

dimensional surface configuration. For both the three dimensional Euler and boundary

Figure 24: Example Surface for Curvature Calculation

layer geodesic formulations of the momentum equation in the r/-direction, the required

curvatures are Kr7_ and Kr7g. These correspond to the curvature of the surface in the _- and

F-directions, respectively (the arcs labeled K{ and Kr7g in Figure 24).
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In orderto approximatethelocal surfacecurvature,theneighboringsurfacepanelsin

thedirectionof the_- andF-coordinateaxisareusedto determinethelocal curvatureby

fitting a circulararconto3 pointson thelocalsurfacepanels.In figure24, thecalculation

of theKn_ curvature uses panels 0, 1 and 3 to build the arc, while the calculation of the

K_ curvature uses panels 0, 2 and 4.

For most cases, the neighboring panels in the positive and negative coordinate direction

"o-" be .... _ to _...:1., ._.^ ,,^_ .1-........... uo_, uu.u L,c arc ,ul uic curvature calcmauons, however two special cases need

to be addressed. The first is where the panel to be calculated is at a sharp edge, as shown

in Figure 25. In this case, it would not be appropriate to use the panel on the other side

of the edge in the calculation of the curvature because the curvature calculated would be

too large. Instead the sharp edge itself is used. The second special case is when both

neighboring panels form sharp edges, as shown in Figure 26. In this case, the same logic

used in the sharp edge case discussed above is used for this case for the determination of the

points to use in the calculation of the curvature. Thus, both directions use the edges in the

curvature calculation, however, since all three points lie on the same plane, the curvature

is zero. The determination of whether a comer is sharp is made by examining the angle

between the normal vectors for the panels. If the angle between the normal vectors is _/2

or greater, then the two panels form a sharp edge.

Projecting Points onto Geodesic Coordinate System With the three points chosen to

calculate the curvature from, the next step is to transform the problem into a two-dimensional
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Figure 25: Single Sharp Edge Degenerate
Surface

Kn_ = 0

Figure 26: Double Sharp Edge Degenerate

Surface

problem so that the circular arc can be found. This is done by constructing a local coordi-

nate system centered at the center point (i.e. the point on the panel being evaluated) and

projecting the vectors to the other two points onto the _- and f-coordinate direction vectors

obtained above. Thus, for each point, g, its local Cartesian coordinates, (xe,ye,ze) map to a

geodesic coordinate, (_e, r/g, _e). If the Kr/_ curvature is needed, then the _e and r/g values

are used, and if the Kn ff curvature is needed, then the 7"/eand _e values are used.

Curvature Determination The curvature for a panel on the surface given the three sur-

face points projected onto the local geodesic coordinate system is found by substituting the

three points, defined as (Xa,Ya), (xb,yb) and (Xc,Yc), into the following equations derived

in Appendix B

R==k _/I(Xa--Xb)Z-k(Ya--yb)2] [(Xa--xc)Z+(Ya--yc)2] [(Xc--xb)2+(Yc--yb)e]

x 0 =

2 [Xc (Ya--Yb) + xb (Yc--Ya) + Xa (Yb--Yc)]

(x_c+ y2c) (Ya--Yb) + (X_b+Y_) (Yc--Ya)+ (x2 + y2a) (Yb--Yc)

2 [Xc (ya--Yb) -k Xb (Yc--Ya) -bXa (yb--Yc)]

(x 2 + y2) (Xa_Xb) nt_(x 2 + y2) (Xc--Xa) q- (X2aq-Y2a) (Xb --xc)

Y0 = 2[Xc(Ya_yb)+xb(yc_Ya)+Xa(Yb--Yc) ]

(46)
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where R is the radius of curvature, and x 0 and Y0 are the locations of the center of the circle.

There is an ambiguity in equation (46) associated with the sign of R. This can be resolved

by examining the distance from the centroid of the cell associated with the panel that is

being evaluated to the center of the arc. If this distance is larger than the circle radius,

then the surface is convex and the appropriate sign is positive. Otherwise the surface is

concave and the radius is taken to be negative. With this the surface curvature calculation

is complete.

Normal Momentum Equations

The normal momentum equations are the source of the curvature corrections to the

surface pressure values. For the inviscid formulation the three-dimensional curvature cor-

rection starts with the normal momentum equation in the geodesic coordinate system, de-

veloped in Appendix A and re-stated here

O--_=P[Krl_U_+Kn_u_]-p[--_-+ u_-_-_ +un-_+ u_--_- (47)

Applying equation (47) to the surface and utilizing the boundary conditions for the Euler

flows (i.e. u_ = 0, = 0, = 0 and _ = 0) yields

Op

O----_= p [Kn_u_ + Knout] (48)

Notice that in equation (48) the sign of the curvatures (Krt _ and Kn_ ) have a significance.

Recall that as discussed above a sign was assigned to the curvature such that a positive

curvature was generated by a convex surface, while a negative curvature was generated by
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aconcavesurface.Thesignof thecurvatureeffectsthedirectionof thepressuregradient.

To adaptthis to twodimensions,simplysetthef-direction surfacecurvatureto zeroto get

0p=
ff-_ K_pu_ (49)

Notice that this formulation is different from Wang and Sun [183] by a factor of -1, but

their denominator for the radius, R, also differs by -1. Thus, curvatures that are positive

for their system are negative for this system, and the resulting pressure gradient is the same

sign.

The geodesic formulation of the boundary layer equations for the three-dimensional

geodesic coordinate system yields the expression for the normal pressure gradient that will

be required in this section. This equation, developed in Appendix A, is re-stated here

0__P_P_

......"[_T¢'_t'1oe th,'_f_x.uB, f],._,_t-,Latxxo xo'_e ,t rnl,_r'lvUIJ.U ÷l_tlLltUU_llUldl.k_..+ +k^ttl_ l.OUUllUial.lj.1 .... li::tJl......... I_1 i:l.[IUJ not bllilply-" ' at the wall as was the

case for the inviscid formulation. The same sign convention for the curvature is used here

as for the inviscid formulation. A positive curvature is from a convex surface and a negative

curvature is from a concave surface. A two-dimensional adaptation of this is found from

setting the f-direction surface curvature to zero to get

Op -K 2
= p (51)

Inviscid Wall Conditions for Curved Wall

The inviscid formulation is separated into two cases, one if the flow at point 'c' is

subsonic and another if it is supersonic.
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SubsonicCase The surface cell state calculation starts with the assumption that the nor-

mal velocity decreases linearly and that the magnitude of the velocity does not change

between points 'c' and '9'. Further, it is assumed that the tangential velocity vector does

not change directions with respect to the surface coordinates between points 'c' and '9'.

The following expresses these criteria

tan &c = --U_'c I

U_,c I

I

= _/r12- u2
Ut,9 V-C 71,9

u_,9 ---_ ut,9 COS _,c

u_, 9 = ut, 9 sin &c

(52)

Notice that this has the effect of holding the temperature constant since the velocity mag-

nitudes are the same between points 'c' and '9', thus Tw would also be equal to Tc.

With the temperature and velocity determined, the pressure relation can be developed

by assuming a linear profile for the pressure curve along Bw and using equation (48) for

89

(53)

_
T9= To 2Cp

where u_, ur/ and ug are the velocity components in the geodesic coordinate directions,

ut is the tangential velocity and _ is the angle made by the tangential velocity and the

-direction.

To develop the temperature relation, the adiabatic condition is used to get the following



theslopeof thepressurecurveatthewall. Tostart,theequationfor thepressurecurvecan

befoundto be

c3P w [ U2w (K_cos2Xc+K_sin2Xc) 6] (54)p=pw+6-_ =Pw l+_-_w

where p is the pressure at a point 6 distance away from the wall along Bw. Since the

conditions are 'c' as well as the temperature and velocity at the wall are known, the wall

pressure can be solved for to get

RTw
= -,2--o pc (55)

pw RTw + u_,_wOC

Kw = K_ cos 2 _.c+ Kr/_ s in2 _c

where Kw is the combined curvature effects in the _ and _ directions. With the wall pressure

found, the pressure at '9' can be found to be

, h: a (56)
P9= Pw l-t'_w w 9J

and the boundary condition development is complete.

Supersonic Case The supersonic case is again split into two separate cases, one for a

shock and the other for an expansion (or parallel flow). The shock case uses the oblique

shock relations developed above to determine the velocity direction and thermodynamic

conditions and the subsonic relations are used to determine the velocity direction. For the

expansion or parallel flow case, the Busemann relations from above are used to determine

the thermodynamic quantities while the subsonic relations are used to determine the veloc-

ity components.
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Viscous Wall Conditions for Curved Wall

As with the inviscid case, the viscous formulation is separated into two cases, one if the

flow at point 'c' is subsonic and another if it is supersonic.

Subsonic Case The subsonic viscous wall conditions again start with an assumption of

the velocity profiles. As was the case for the inviscid wall conditions, the direction of the

tangential velocity is assumed constant, i.e. ;tc = A'9" Since there are only two conditions

available to build a velocity profile around, the velocity at point 'c' and the no-slip boundary

condition at the wall, the velocity profiles are limited to linear profiles defined as

6

un -- _url,c (57)

S

U t _ _cUt,c

For the pressure boundary condition there are three conditions known, the pressure at point

'c' and _ at the wall and point 'c' from the boundary layer equations in geodesic coordi-

nates derived in Appendix A. Applying the normal momentum equation of the boundary

layer equation (50) to these conditions yields

0p

ff-_w =0

8p c = pcu2cKc

(58)

where Kc is the same equation as the term Kw presented above, but applied at point 'c'

instead of at the wall. With three conditions a quadratic profile can be used to describe the
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pressuredistributionthroughouttheboundarylayerto get

P = 5 (pcU2t'cKcSc) - 1 + pc
(59)

The development of the final condition, temperature, utilizes the compressible boundary

layer energy equation in geodesic coordinates, from Appendix A and restated here

OH OH +u__H+
p--_- + p u{-_ (60)

= --at +--_- Orl _rr -+_c9r7 1- _rr _u{--ff-_-+ ug--ff-_-

If steady state is assumed and the equation is applied to the wall (where u = 0), then

equation (60) becomes

/J - ] w=0 (61)

where all derivatives are taken at the wall. Converting this from stagnation enthalpy to

temperature, H = CpT + U2/2, and recalling the constant specific heats assumption of

NASCART-GT yields as well as the boundary layer assumptions that ut >> u_, the linear

velocity profile assumption yields

a ,r.]2 w '}- -'Cpp \ a gl lw j
1 al.t _,aT w+/.t--7 aN _-_ =0 (62)

Finally, if the assumption of constant viscosity at the wall is used then the boundary layer

energy equation at the wall becomes

°32T w Pr ( au t ._ 2Or/2 =-_pp Or/ wJ (63)
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This condition along with the temperature at point 'c' provides two of the three condi-

tions required for a quadratic curve fit. The third condition comes from the adiabatic or

isothermal wall boundary condition.

For the adiabatic wall boundary condition, the third condition is _ w = 0 which results

in the following equation for the temperature profile

T- 2Cp -_c -

1
lj + rc

(64)

For the isothermal wall boundary condition, the third condition is given by the wall

temperature which results in the following equation for the temperature profile

T = -2--..CTpUt,c -_c - -_c + (Tc - T_v) _c + rw (65)
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Special Surface Cell Treatment

The original objective of this alternative boundary condition treatment was to handle

the arbitrarily small cut cells in a separate fashion so that they do not appear in the finite

volume formulations (either for non-smoothness or time-step reasons). Thus, the primary

focus is on cut cells that are much smaller than the flow cells that are at the same refinement

level, see figure 27. Notice that the distance between point 'wl' and 'cl' is much larger

L2

LI

e2

Figure 27: Large Cut Ceil Example

than between 'w2' and 'c2'. This increased distance causes larger errors in the interpolation

procedures. Since these are not the cells that are of primary importance, these cells should

not be excluded from the finite volume integration. Including these cells in the finite volume

formulation has the advantages of further reducing the cells that are not included in the

finite volume integration and removing the cases where the largest interpolation errors will

occur. There is a trade-off between the non-smoothness of the finite volume scheme and the

accuracy of the interpolation procedures. If surface cells that are "too small" are included in

the integration scheme, then the viscous formulation will become unstable and the inviscid

94



schemewill haveits time-stepgreatlyrestricted,howeverif no surfacecells areincluded

in the integrationscheme,thentheinterpolationinaccuracieswill appearin theseregions.

In practice,thecriteriausedto determinethehowsmallof a surfacecell to includein the

formulationis if thesurfacecells with volume95%or moreof theflow cell volumeatthe

samerefinementlevel areincludedin theintegration.

State Reconstruction

Once the velocity, pressure and temperature are determined for the surface cell, the state

vector can be reconstructed using the equation of state and the isentropic relation between

internal energy and density to get the density, momentum and energy values from

U9

P9
P9u9

/391) 9

P9w9

P9

Rr9

P9U9

P9V9

P9"W9

(66)

95



CHAPTER IV

PARALLELIZATION ENHANCEMENTS

Since the OpenMP code in flowCart (the flow solver in CART3D) was written following

a domain decomposition strategy, each processor integrates only a sub-region of the entire

domain, and then exchanges data at the boundaries of its subdomain. While this strategy is

well suited for the the MPI parallelization of CART3D, there were several significant mod-

ifications that needed to be accomplished in order for the MPI port to be completed for the

non-multigrid scheme. Most changes focused on handling the differences in the OpenMP

and MPI paradigm, such as ensuring all processes receive the results of serial tasks and

removing all dependencies on shared memory structures. All of these modifications were

made such that the temporary memory requirements did not drastically increase with the

storing of large amounts of configuration data. This chapter will discuss some of the more

important changes that needed to be accomplished.

Initialization Information Distribution

One of the key differences between the OpenMP paralMization and the MPI parallelization

is how the parallelization is accomplished. For OpenMP, threads are spawned for the paral-

Ielized regions of the code, leaving the rest of the code to be executed by a single instance
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of theapplication.All datathat existsfor theserialportionsof the codeis automatically

availablefor theparallelthreads.ForMPI, everythingis executedasparallelprocesses,so

anyserialsectionmustbedelegatedto oneprocesswhile theotherswait. Any datathat

needsto beavailableto all processesmustbeexplicitly passedto all processessinceMPI

doesnot guaranteeanydata(includingcommandline arguments)will be availableto all

processes.

Theinitializationprocessin theOpenMP version of tlowCart (flowCart-OpenMP) con-

sisted of parsing the command line arguments to get any initial configuration information,

reading in the configuration file, and finally re-parsing the command line arguments for any

configuration information that overrides the configuration file settings. All of this initial-

ization was performed serially, and was followed by packing the configuration information

into global data structures. For the MPI version of flowCart (flowCart-MPI), this needed

to be changed such that the root process (the only process guaranteed to have access to

the command line arguments and configuration file) performed all of the serial tasks from

flowCart-OpenMP and then distributed the configuration information to the rest of the pro-

cesses, via the MPI_Bcast function.

Grid Information Distribution

Once the configuration information was distributed to all of the MPI processes, all of the

grid information needed to be distributed. This was done in flowCart-OpenMP in a section

of serial code using two passes through the grid data file, with the first pass determining the
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grid sizesfor eachprocessfor appropriateloadbalancingandthesecondpassdistributing

thegrids. As before,this wasdelegatedto theroot process.Thefirst passrequiredlittle

changesexceptfor someextrainternalbuffersfor therootprocessto storethegrid sizesfor

eachprocess.At theendof first pass,therootprocessdistributesthegrid sizesusingthe

MPI call MPI_Send, and each process receives their grid size using the MPI call MPl_Recv,

which is the followed by the allocation of the memory for the grid data by each process.

wh_.l,_......o,_,,_,.u" pass through the grid data file (where the grids are actually distributed to

each process) required more attention associated with the exchange of data between grids.

In addition to reading and distributing the grids, the information required to map partitions

that share one or more faces is also constructed. Figure 28 shows a simple example of two

partitions and the overlapping cells that each partition uses to store information about its

neighbor.

part. 0 part. 1

!

!

part. 0

+
overlap cells

-I r-+-_, ,_--

I

1 r
......... I .........

Figure 28: Overlapping Cell Configuration for flowCart

part. 1

The indexing scheme that was used in the OpenMP parallelization to map the boundary

overlap control volumes for each process to the flow volumes in another process needed to
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bechanged.It wassetupfor eachgridto knowwhereits overlappingcellsmappedandthen

retrievethatdatawhenneeded.Thusfor Figure29,Table2 showstheindexingschemethat

flowCart-OpenMPwouldhaveused.Underthisindexingscheme,whenpartition0 needed

to updateoverlapcell 1,correspondingto (0,1)in Table2, the informationwasretrieved

from partition 1, cell 1, correspondingto (1,1),and partition 0 only neededto storethe

integerpair (1,1) in orderto updateoverlapcell 1. While this schemeworked well for

its strongdependenceondirectaccessto physicalmemorylocations.

part. 0 /

54@6 ;;2 -?ii
.... t

1

1 3 1 1

.... / .... a
i
t
i

o o 1
i
i
i
t

overlap cells-_, }2

_',2
i ....
I

i 1
i
i

part. 1

1 6

Figure 29: Overlapping Cell Indexing for flowCart

Since MPI is a message based communication scheme, emulating the updating of in-

formation for the example above would require too much bi-directional communication

between processes. For partition 0 to update overlap cell 1, a message would first need to

be sent to process 1 requesting the data from cell 1, then process 1 would need to send a

message back to process 0 with the data. While this scheme could be improved by collect-

ing all of the requests for data going to each process and performing fewer, larger requests

and sends, this would still result in unnecessary overhead.
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Table2: OriginalOverlappingCellIndexingfor flowCart-OpenMP

OverlapCell InternalCell StoredData
(part,index) (part,index) (part.,index)

(0,0) (1,0) (1,0)

(0,1) (1,1) (1,1)

(0,2) (1,2) (1,2)
(0,3) (1,3) (1,3)

(1,o) (o,o) (o,o)
(1,1) (0,3) (0,3)
(1 9.'_ rn_ rnm
(1,3) (0,7) (0,7)

A more direct indexing scheme is to have each partition keep track of its cells that are

needed by a particular process. For Figure 29, this would result in Table 3. Now overlap

cell 1 in partition 0 is updated by partition 1 sending cell 1 to partition 0, and partition 1

only needs to store the index of its cell that needs to be sent, the partition to send the data,

and the overlap cell index. Using this scheme, the exchange of data between partitions

occurs in a uni-directional communication.

In addition to the overlap cell indexing change, significant efforts were made in order

to not drastically increase the transient memory requirement on the root process in order to

build all of the overlapping information. While there was an increase in the internal data

structures required for the grid distribution process, the increase was negligible and had no

overall impact on the memory usage.

State and Gradient Exchanges
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Table3: NewOverlappingCell Indexingfor flowCart-OpenMP

InternalCell OverlapCell StoredData
(part.,index) (part.,index) (index,overlappart.,overlapindex)

(1,0) (0,0) (0,0,0)
(1,1) (0,1) (1,0,1)
(1,2) (0,2) (2,0,2)
(1,3) (0,3) (3,0,3)
(0,0) (1,0) (0,1,0)
(0,3) (1,1) (3,1,1)
(0,6) (1,2) (6,1,2)
(0,7) (1,3) (7,1,3)

In order for the solver to advance in time, the state and gradient information for the overlap-

ping cells mentioned above needed to be exchanged using MPI calls instead of the current

OpenMP functionality. This was easily accomplished by using the new overlap cell index-

ing scheme. Each process now loops over all of its cells that are overlap cells for other

processes and packs the state (and later the gradient) data into message buffers (one for

each process that is to receive data). Once the buffers are packed, they are sent using the

non-blocking MPI send function MPI_Isend. This allows each process the ability to send

all of its data so that it can be ready to receive its overlap cell data from other processes,

using the MPI_Recv function. If the blocking form of the send function MPI_Send were

used, then it is easy to see that dead-lock conditions could easily arise. Take a simple two

process parallel exchange where the two processes both call MPI_Send, they will both be

stuck waiting because the call will not return until the receiving process receives the data,

but the receiving process is stuck waiting for its own send to complete. Thus, dead-lock
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occurs.

While theuseof the non-blockingsendsolvesthe dead-lockcondition,using it as

describedabovedoesintroducea possibleproblem. Having all processessendingtheir

dataat thesametime cancausethememoryconnectionbandwidthto becomesaturated,

butinpracticethisappearsto havenoadverseperformanceeffects.Forseverelybandwidth

limitedarchitectures,it is conceivableto createacommunicationschedulingalgorithmso

thnt o_r' h nr,_,-._.oo ,. .... 1A ,-.:_-t. .............. v ........ ,_,,,- ,_,,,cl _c_Ju, receive, or wait for each step in the schedule. This

schedule could be optimized to minimize the number of steps in the schedule or to minimize

the total elapsed time in the schedule. However, since bandwidth saturation has not become

an issue, these schemes will not be studied further.

Solution Reporting Mechanisms

Two changes were needed to be made to the solution reporting mechanisms in order to

complete flowCart-MPI. The first change was to the residual calculations that occur after

each solution iteration has been performed. For the residual calculations, there are two

residuals that are calculated, the L1 and infinity norms of the density values. Each process

continues to calculate its local residuals as before, but an additional step is added. At the

end of each residual calculation, each process uses the MPI function MPI_Allreduce in or-

der to determine the global residuals. The MPI_Allreduce function performs a traditional

gather-scatter operation [123]. A gather-scatter operation is a communication operation

that collects and processes information from a number of sources and distributes the results

102



to all processesthat suppliedtheinformation.For theL1 norm, theoperationspecifiedto

theMPI functionis the sumoperation(usingMPI_SIN),while for the infinity norm, the

operationspecifiedis themaxoperation(usingMPIYIAX).

The secondchangethat neededto occurwasto the extractionof cuttingplanesand

surfacesthatoccurredduringpost-processing•Aswasthecasefor theresidualcalculations,

eachprocessperformsits extractioncalculationsasbefore,but anadditionalstepis added.

^.¢,..... 1. pYOCCSS u .... ...¢_._ :. ............. : .... 1___1__ ..... -_ , • ,Z_XiL_.,I _,a_,.,li llctb L)cIiuLIIICU it3 UVVll _)kLiizlULIUII Uiztlt.;Ul_LIUllb ilIIO [litb CIC_LL_U its own

portion of the resulting cutting plane or surface, the root process cycles through all of

the other processes and collects the plane or _urf_oe ;,,¢ .... f; .... ,_, ,.,,_o ,h_. ,_,._ .., •

This data is not stored by the root node since doing so could cause a significant additional

memory requirement on the root node, especially if the cut plane or surface is larger than

the available memory. Thus, common sections between processes (i.e. overlap cells or

_,a,_u _) cannot u= ennnnatcu as they would in flowCart-OpenME This represents the

only performance characteristic difference between flowCart-OpenMP and flowCart-MPI

and in general is only a small portion of the overall extracted cutting plane or surface,

(< 0.1%).
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CHAPTER V

SOLID BOUNDARY RESULTS

After implementing the modifications to NASCART-GT presented in Chapter 11I, tests were

performed to determine the improvements made in the ability to model the solid boundaries

in both inviscid and viscous flows in Cartesian grid formulations. These new solid boundary

treatments remove the non-smoothness seen in the traditional viscous flux reconstruction

techniques as well as the time-step limitations present in all current Cartesian solvers that

include the surface cells in the integration procedure. This chapter presents a series of test

cases that demonstrates the ability of NASCART-GT to handle a variety of inviscid and

viscous flows.

Primitive Geometry Flows

The first set of cases are primitive geometry flows that have well studied solutions, either

analytically or computationally, which can be used as a first stage of validation. To validate

the inviscid wall boundary conditions, an incompressible cylinder flow and a compressible

cylinder flow are studied. To validate the viscous wall boundary conditions, an incompress-

ible flat plate flow and a supersonic flat plate flow are studied.
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Incompressible Inviscid Cylinder Flow

The incompressible inviscid cylinder test case is a circular cylinder with a radius of 0.5,

or a curvature of 2.0, in aM_ = 0.1 freestream flow. The computational boundaries are 10.5

diameters ahead and behind the cylinder and 10.5 diameters above and below the cylinder.

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions

are presented on two grids, one using a coarse grid of 84x84 root grid dimensions with 4

levels of refinement for a total of 10,056 cells and a fine grid with 5 levels of refinement

for a total of 18,216 cells. Figures 30 and 31 show the coarse and fine grids, respectively.

For this case the reference points for the wall boundary conditions are determined using the

interpolation procedure.

Figure 30: Coarse Computational Do-

main for Incompressible Cylinder Flow
Figure 31: Refined Computational Do-

main for Incompressible Cylinder Flow

The cylinder curvature, calculated by NASCART-GT using the methods described in

Chapter III, is within 0.1% of the true value 2 for the cylinder.
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Toassesstheaccuracyof thesurfaceboundaryconditions,thesurfacepressureis com-

paredto thepressureobtainedtheincompressiblepotentialflow solution

1 2
p(O) = p_, + -_p_U_ (1 -4sin 2 0) (67)

where 0 = 0 ° is the leading edge of the cylinder, 0 = 90 ° is the pressure minimum on the

upper half of the cylinder and 0 = 180 ° is the trailing edge of the cylinder. Figure 32 shows

a comparison between the fiat wall and curved wall boundary conditions for the 1st order

solution on the coarse grid. Both conditions accurately capture the front stagnation pressure

and under predict the rear stagnation pressure. The rear stagnation pressure under predic-

tions are most likely due to the numerical dissipation associated with the computational

schemes employed. The curved wall boundary condition does a better job of capturing

the pressure minimum with a 6.5% relative error compared to a 9.1% relative error for the

fiat wall boundary condition. Table 4 shows the front stagnation point, minimum pressure

point and rear stagnation point pressure values for the fiat wall and curved wall boundary

conditions compared to the theoretical incompressible solution.

Table 4: Incompressible Cylinder Surface
Pressure Values for 1st Order Solution

Table 5: Incompressible Cylinder Surface
Pressure Values for 3rd Order Solution

fiat curved exact fiat curved exact

P/P_ P/P_ P/P_ P/P_ P/P_ P/P_

front stag. 1.0067 1.0067 1.0070 front stag. 1.0076 1.0057 1.0070

Pmin 0.9879 0.9854 0.9790 Pmin 0.9828 0.9791 0.9790

rear stag. 0.9988 0.9988 1.0070 rear stag. 1.0017 1.0047 1.0070

The curved wall boundary condition solution has a C l of 0.0000 and a Ca of 0.8166

while the flat wall boundary condition solution has a C t of 0.0000 and a Cd of 0.8608. The
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Figure 32: Incompressible Cylinder Sur-

face Pressure 1st Order Solution with In-

terpolated Reference Points
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Figure 33: Incompressible Cylinder Sur-

face Pressure 3rd Order Solution with In-

terpolated Reference Points

non-zero drag calculations are a result of the separation caused by the numerical dissipation

discussed above. Table 7 shows the lift and drag coefficients for this case along with the

other cases for the incompressible cylinder.

Figure 33 shows the results for the same configuration as above except using the 3rd

order solver. For this case both solutions slightly under-predict the front stagnation pressure

and under predict the rear stagnation pressure. Again, the numerical dissipation causes a

separation region in the rear of the cylinder, but the separation point is moved much further

back compared to the first order solution. The separation point for the first order solution

is at 0 _ 156. ° while for the third order solution it is at 0 _ 167 °. While both boundary

condition schemes are better able to capture the pressure minimum using the 3rd order

scheme, the curved wall boundary condition is again much better with a -0.01% relative

error compared to a 0.2% relative error for the fiat wall boundary condition.
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Figure 34: Fine Grid Incompressible

Cylinder Surface Pressure Flat Wall with

Interpolated Reference Points
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Figure 35: Fine Grid Incompressible

Cylinder Surface Pressure Curved Wall

with Interpolated Reference Points

Table 6: Incompressible Cylinder Surface Pressure Values for Fine Grid Solution

flat curved exact

P/P= P/P= P/P=

front stag. 1.0067 1.0067 1.0070

Pmin 0.9815 0.9796 0.9790

rear stag. 1.0027 1.0037 1.0070

Table 6 shows the front stagnation point, minimum pressure point and rear stagnation

point pressure values for the flat wall and curved wall boundary conditions compared to

the theoretical incompressible solution. From table 7, the curved wall boundary condition

solution using the third order solver has a Cl of -0.1001 and a Ca of -0.05578 while the

flat wall boundary condition solution has a Ct of -0.00987 and a Ca of 0.2250. Again, the

non-zero drag calculations are due to the separation caused by the numerical dissipation.
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A comparisonof the coarsegrid andfinegridsolutionsaregivenin figures34and35.

Bothfiguresshowslightimprovementstothesurfacepressurevaluesaroundtheentiresur-

face. Table6 showsthe front stagnationpressure,pressureminimum andrearstagnation

pressureresultsfor bothcases.Forthefinegrid,thecurvedwall boundaryconditionsolu-

tion hasaCl of -0.0423 and a Ca of 0.1037 while the fiat wall boundary condition solution

has a Cl of -0.0409 and a C d of 0.1134, see table 7.

Table 7: Incompressible Cylinder Lift and Drag Results

first order coarse third order coarse third order fine

fiat wall curved wall flat wall curved wall fiat wall curved wall

Cl 0.0000 0.0000 -0.00987 -0.1001 -0.0409 -0.0423

Ca 0.8608 0.8166 0.2250 -0.05578 0.1134 0.1037
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Finally, figure 36 showsthe grid convergencefor the front stagnationpoint pressure

error for the fine grid solution, thecoarsegridsolution,andonecoarsergrid not shown.

Thex-axisof this figurecorrespondsto thenumberof cellsalongthecylinderdiameterin a

coordinatedirection.For coarsergridstheorderof accuracyis notquitesecondorder,with

theactualorderof 1.31,while for thefinergridstheorderof accuracyis just abovesecond

order,with theactualorderof 2.15.

0.01

0.001

i

curve p stag ----+--
flat p stag ---x---

0._.000! =
16 32 64

1/ax

Figure 36: Incompressible Cylinder Grid Convergence with Interpolated Reference Points

110



Compressible Inviscid Cylinder Flow

The compressible inviscid cylinder test case is a circular cylinder with a radius of 0.5,

or a curvature of 2.0, in a Moo -- 0.38 freestream flow. The computational boundaries are 10

diameters ahead and behind the cylinder and 10 diameters above and below the cylinder.

The finest level of cells were ensured to be 0.5 diameters around the cylinder. Solutions are

presented on two grids, one using a coarse grid of 42x42 root grid dimensions with 5 levels

of refinement for a total of 4884 cells and a refined grid with 6 levels of refinement for a total

of 13,052 cells. Figures 37 and 38 show the coarse and fine grids, respectively. For this case

the reference points for the wall boundary conditions are determined using the interpolation

procedure. Comparisons are made with results from Dadone and Grossman[44] for their

structured grid solutions on a 128x32 (4096) cell domain, both with and without curvature

corrections.
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Figure 37: Original Computational Do-

main for Compressible Cylinder Flow

Figure 38: Fine Computational Domain

for Compressible Cylinder Flow
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Table8 showsa comparisonbetweenthepressureat thefront andrearstagnationloca-

tionsandthepressureminimumlocationvaluesfor theflat wall andcurvedwall boundary

conditionswith theresultsfrom DadoneandGrossman.Forthe coarsegrid solution,both

boundaryconditionsarevery closeto thereferenceresultsfor the front stagnationpoint.

For the rearstagnationpoint, thesamenumericaldissipationeffectsdiscussedpreviously

areapparentherewith little differencebetweenthetwo results.At thepressureminimum,

the curvedwall solution is significantlybetterwith arelativeerror of 0 0% enmnnrod tn

9.2% for the flat wall boundary condition solution. The curved wall boundary condition

solution has a Ct of -5.857 × 10 -4 and a Cd of 0.01905 while the flat wall boundary con-

dition solution has a C1 of -5.760 × 10 -3 and a Cd of 0.2221. The curved wall boundary

condition significantly improved the lift and drag coefficients as well. Table 9 shows the

lift and drag coefficients for this case along with the fine grid case for comparisons.

Table 8: Compressible Cylinder Surface Pressure Values

Flat Wall Curved Wall

coarse fine coarse fine Dadone

P/Po P/Po P/Po P/Po P/Po

front stag. 1.001 1.005 0.999 1.004 1.001

Pmin 0.630 0.616 0.582 0.578 0.577

rear stag. 0.943 0.962 0.953 0.966 1.001

A comparison between the pressure values for the original and curvature boundary

conditions for the fine grid from table 8 shows that the curved wall solution changed much

less than the flat wall solution, with the flat wall solution substantially improving. The most
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pronouncedimprovementis in thepressureminimumvaluewith a relativeerrorof 6.8%

(comparedto 9.2%for thecoarsegrid).Thecurvedwall pressureminimumvalueimproved

to a relativeerrorof 0.2%(comparedto 0.9%for thecoarsegrid). The front stagnation

point is slightly off (around0.4%)andthe rearstagnationpoint hasimproved,but is still

showingthe effectsof numericaldiffusion. Thecurvedwall boundaryconditionsolution

hasa Cl of -2.050 x 10 -3 and a Cd of 0.0644 while the flat wall boundary condition

solution has a C t of -6.932 x 10 -3 and a Ca of 0.1803, Again, the curv_a ,,_11 h,_,,,,,_,,.y

condition significantly improved the lift and drag coefficients compared to the flat wall

boundary condition, while both fine grid solutions result in a slight increase in lift and drag

coefficients.

Table 9: Compressible Cylinder Lift and Drag Results

third order coarse
fl_f _t_,all ,-. .... A .... 11
Als_q. vvt_ti S.,UJ, V_,,,Id Wall

third order fine

,_tt w_tn curved wail

Cl -5.760 x 10 -3 -5.857 x 10 -4 -6.932 x 10 -3 -2.050 x 10 -3

Cd 0.2221 0.01905 0.1803 0.06444
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Finally, figures39 and40 showtheMachcontoursfor the solutionson the fine grid

with theflat wall boundaryconditionandthecurvedwall boundarycondition,respectively.

Figures41and42showtheMath contoursfromDadoneandGrossmanfor their flat wall

boundaryconditionandcurvaturecorrectedboundarycondition,respectively.Both sets of

figures have AM = 0.1 for the contours. Comparing the reference figures to the figures from

NASCART-GT shows that both NASCART-GT boundary conditions perform quite well

at capturing the flow features everywhere except near the rear stagnation point. Si._.d!_

stagnation pressure losses that are present in the NASCART-GT cases can be seen in other

results from Dadone and Grossman for less accurate wall boundary conditions.
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Figure39: MachContoursfor Compress-
ible Cylinder Flow Flat Wall with Inter-
polatedReferencePoints

.4 _ .4

,3 .3

Figure 40: Mach Contours for Compress-

ible Cylinder Flow Curved Wall with In-

terpolated Reference Points

., .4

Figure 41: Compressible Cylinder Mach

Contours No Curvature from [44]

Figure 42: Compressible Cylinder Mach

Contours with Curvature from [44]
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Incompressible Viscous Flat Plate Flow

The incompressible flat plate case is a standard test case where the results can be com-

pared to a known Blasius analytical solution, see [186] for details of the derivation. The

fiat plate is one unit long and oriented along the x-axis in a Moo = 0.2 freestream flow and a

freestream Reynolds number of Re,,, = 10,000. The computational boundaries extend 0.25

units in front of the leading edge and behind the trailing edge and 0.25 units above the fiat

plate. The solution is presented on a computational domain with a root grid dimension of

60x10 and 6 levels of refinement. In addition, the finest level of cells are within 0.008 units

of the fiat plate. The solution converged in approximately 40,000 iterations. The final grid

consists of 52,926 cells. Figure 43 shows the final grid. For this case the reference points

for the wall boundary conditions are determined using the interpolation procedure.

Figure 43: Final Computational Domain for Incompressible Flat Plate Flow

Figure 44 shows the skin friction coefficient for this case compared against the Blasius

solution and the results from Coirier [38]. Generally, there is excellent agreement between

the Blasius solution and the NASCART-GT solution. There are some differences at the

leading edge of the fiat plate that are caused by inadequate cell resolution for the very
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smallbounda_'ylayerregionassociatedwith theleadingedgeregion.Thereis alsoaslight

accelerationat thetrailing edgedueto thefactthattheplateis not infinite thatcausesthe

skinfriction coefficientto rise.Figure45showstheu-velocityprofile throughtheboundary

layeratthequarter-pointandmid-pointof theflatplate.Hereexcellentagreementis shown

betweentheBlasiussolutionandthecomputedsolution,andthecomputedsolutionshows
i

the self-similarity that is expected.
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Figure 44: Incompressible Flat Plate

Skin Friction Coefficient with Interpo-
lated Reference Points

Figure 45: Incompressible Flat Plate Ve-

locity Profiles with Interpolated Refer-

ence Points

Non-Grid Aligned Incompressible Viscous Flat Plate Flow

The non-grid aligned incompressible fiat plate case is the same flow conditions as the

incompressible fiat plate flow case above. The difference is that for this case the fiat plate

and freestream velocity vector are at a 30 ° angle to the x-axis. The solution is still a Blasius

solution, however now there are cut cells along the surface. The grid used for this solution

is a 18x12 root grid dimension with 6 levels of refinement. The solution converged in
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approximately20,000iterations. The final grid consistsof approximately13,152cells.

Figure 46 showsthe final grid. For this casethe referencepoints for the wall boundary

conditionsaredeterminedwithoutusingtheinterpolationprocedure.

Figure46: Final ComputationalDomainfor IncompressibleNon-GridAligned Flat Plate
Flow

Figure47 showsthe skin friction coefficientfor this case.Oncetheleadingedgegrid

resolutionproblemis passed,at x/L ,-_ 0.5, there is good agreement between NASCART-

GT and the Blasius solution. However, at the leading edge, the Blasius solution is not

reliable due to the low local Reynolds number there, and the computed solution requires

more grid points to adequately resolve this region. As in the above case, acceleration at

the trailing edge caused by the finite length of the fiat plate causes an increase in the skin

friction coefficient.

The skin friction coefficient for this solution should follow the following curve

Cf =ax 6 (68)

where for the actual Blasius solution of this flow, the values for a and b are 0.00664 and

-0.500, respectively. Using a standard nonlinear least-squares algorithm to minimize the

errors between equation (68) and the NASCART-GT data results in the values of a and b of
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Figure 47: Incompressible Flat Plate Skin Friction Coefficient on Non-Grid Aligned Flat

Plate without Interpolated Reference Points

0.00629 and -0.427 for the NASCART-GT results, respectively. Thus, in the region where

the leading edge resolution and the trailing edge acceleration are not adversely effecting

flow, the NASCART-GT solution maps quite closely to the Blasius solution.
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Supersonic Viscous Flat Plate Flow

The supersonic flat plate case is another standard test case that has been extensively

studied. The flat plate is one unit long and oriented along the x-axis in a M_, = 3.0

freestream flow and a freestream Reynolds number of Re= -- 1000. The computational

boundaries extend 0.2 units in front of the leading edge and 0.8 units behind the trailing

edge and 0.8 units above the flat plate. The solution is presented on a computational domain

with a root grid dimension of 20x16 and 6 levels of refinement. In addition, solution adap-

tion is performed every 1000 iterations. The solution converged in approximately 40,000

iterations with the CFL number at 0.10. The final grid consists of 15,337 cells. Figure 48

shows the final grid. For this case the reference points for the wall boundary conditions are

determined without using the interpolation procedure.

The results from this case are compared with Arminjon and Madrane [11], Satya Sai et

al. as well as the standard reference for the computational solution for an infinitely long

fiat plate, Carter [29]. The Satya Sai et al. results are for an infinitely long flat plate and are

validated against Carter, and the Arminjon and Madrane results are for a finite length flat

plate and are validated against Satya Sai et al.

Figure 49 shows the skin friction coefficient for this case. There is excellent agreement

between the Carter results and NASCART-GT solution until the effects of the finite flat

plate are seen around x/L = 0.5 in the NASCART-GT solution. The fact that the plate is

finite causes the flow to accelerate as it approaches the trailing edge, thus the skin friction

coefficient increases. Figure 50 shows the surface pressure for this case. Again there is
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Figure48: Final ComputationalDomainfor SupersonicFlat PlateFlow

excellentagreementbetweenthe SatyaSaietal. resultsandtheNASCART-GTsolution

until thetrailing edgeaccelerationeffectsdominate.Noticethattheseeffectsappearfurther

downtheflat plate,x/L = 0.75, since the boundary layer pressure is less sensitive to the

acceleration effects. Figure 51 shows the Mach contours for this case, and figure 52 shows
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Figure 49: Supersonic Flat Plate Skin

Friction Coefficient without Interpolated
Reference Points

Figure 50: Supersonic Flat Plate Pressure

without Interpolated Reference Points

the reference Mach contours from Arminjon and Madrane. There is excellent agreement
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Figure51: MachContoursfor SupersonicFlatPlatewithout InterpolatedReferencePoints

Figure52: SupersonicFlat PlateMachContoursfrom [11]
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betweenthetwo contourplotswith NASCART-GTcrisply capturingthe boundarylayer

inducedshockaswell astheboundarylayergrowth.

Two-Dimensional Airfoil Flows

The next set of cases are two-dimensional airfoil flows that have well studied computa-

tional solutions which can be used to further validate the code. The inviscid wall boundary

conditions are compared to a transonic NACA-0012 airfoil flow, while the viscous wall

boundary conditions are compared to a subsonic and supersonic NACA-0012 airfoil flow.

Transonic Inviscid NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a M** = 0.85 flow at an angle-of-attack of

a = 1.00 °. The computational boundaries are 5 chords ahead and behind the airfoil and 5

chords above and below the airfoil centerline. Solutions are presented on a computational

domain with a root grid dimension of 44x42 and 7 levels of refinement. In addition, solu-

tion adaption is performed every 200 iterations starting after 1000 iterations. Both solutions

converged in approximately 20,000 iterations using local time-stepping. The final grids for

the flat wall solution consists of 7981 cells and 7963 cells for the curved wall solution.

Also, a curvature maximum of 40.0 is imposed in order to limit the large pressure gradients

that can result near the leading edge. Figure 53 shows the final grid for the curved wall

solution. Notice that the solution adaption has refined cells near the leading edge where

the flow is going through rapid accelerations and near the shocks. The results from this
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casearecomparedwith theAGARD AdvisoryReportresults[119]whichpresentsgeneral

resultsfrom severalresearchersaswell asdetailedresultsfor a320x64(20,480)cell struc-

turedgrid solution.For thiscasethereferencepointsfor thewall boundaryconditionsare

determinedusingtheinterpolationprocedure.

To furthervalidatethecurvaturecalculationsof NASCART-GT,theexactcurvaturefor

theNACA-0012 airfoil, see[85] andAppendixC for details,is comparedto the values

nhtMn_.d frnm NA.qt'ART-f'.T r:ig,,,- e 54 o..,,_r'.....,, o ,r,°_,,...1,., ,_. ............... a ___1;................................... r,,w of t,,,_ ,.u,,atulc atlU. gencl_uiy

excellent agreement can be seen. There are slight differences between the the actual and

computed curvatures at the leading edge, but these are due to using the minimum curvature

for each computational cell that has multiple geometric intersections.
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Figure 53: Final Computational Domain
for Transonic Inviscid NACA-0012 Flow

Figure 54:NACA-0012 Curvature Calcu-

lated from NASCART-GT

Figures 55 and 56 show the surface pressure coefficient comparison between the NASCART-

GT solutions and the AGARD solution for the upper and lower surfaces, respectively. The

curved wall solution does a better job of capturing the rapid accelerations with only slight
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differencesat the leadingedge.Theuppersurfaceshocklocationsaremissedby approx-

imately0.023chordsfore and0.014chordsaft for thecurvedwall andfiat wall solutions

respectively.For the lower surfacethecurvedwall solutionis very closeto thereference

data,while thefiat wall solutionis approximately0.028chordsaft.
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Figures 57 and 58 show the Mach contours for the fiat wall and curved wall solutions,

respectively. Figure 59 shows the Mach contours from the AGARD reference. All three

figures use a AM -- 0.05 for the contours. Both wall boundary conditions do an excellent

job of capturing the flow features throughout the computational domain.

Finally, table 10 shows the lift and drag coefficients for the flat wall and curved wall

cases as well as the AGARD committee results. In addition, the scatter associated with

the various computed results by the AGARD researchers is also provided. The flat wall
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boundaryconditionsolutionperformsslightlybetterthan thecurvedwall boundarycon-

dition solution for the lift coefficientwith a 6.8%under-predictionversus10.7%for the

curvedwall solution,howevereachresult is within thescatterof the AGARD data. The

curvedwall boundaryconditiondoesa muchbetterjob at predictingthe dragcoefficient

andis underthe AGARD databy 7.4%. However,thefiat wall boundaryconditionover-

predictsthedragby 23%,but iscloseto theAGARDrange.This is dueto theinability of

theflat wall to capturetheleadingedgesuctionpeaks.Giventhefact tbat NASCART-GT

usedonly approximately40%of thecellsthattheAGARD referenceused,thecurvedwall

resultsarequitereasonable.

Table10:TransonicInviscidNACA-0012Lift andDragResults

fiat wall curvedwall AGARD [119] (scatter)

C l 0.3341 0.3201 0.3584 (0.0589)

Cd 0.07150 0.05371 0.0580 (0.0126)
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Figure57: Mach Contoursfor Transonic
InviscidNACA-0012Flat Wall

Figure58: Mach Contoursfor Transonic
InviscidNACA-0012Flow CurvedWall

\

Figure 59: Inviscid Transonic NACA-0012 Mach Contours from [119]
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Subsonic Viscous NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a M_, = 0.8 flow at an angle-of-attack of

o_ = 10 ° and a freestream Reynolds number of Re= = 500. The computational bound-

aries are 5 chords ahead of the airfoil, behind the airfoil, above the airfoil centerline and

below the airfoil centerline. Solutions are presented on a computational domain with a

root grid dimension of 33x30 and 6 levels of refinement. In addition, solution adaption is

performed every 500 iterations starting after 1000 iterations. Both solutions converged in

approximately 40,000 iterations. The final grids for the flat wall solution consists of 57,100

cells and 56,947 cells for the curved wall solution. Also, a curvature maximum of 40.0

is imposed. Figure 60 shows the final grid for the curved wall solution. For this case the

reference points for the wall boundary conditions are determined using the interpolation

procedure.

Figure 60: Final Computational Domain for Subsonic Viscous NACA-0012 Flow
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Theresultsfrom thiscasearecomparedwiththeresultsfrom CasaliniandDadone[32],

whoseresultscomparequite well to acollectionof resultsfrom Bristeauet al. [27] others

from an internationalworkshoponcompressibleNavier-Stokessolvers.TheCasaliniand

Dadoneresultsarefrom astructuredgrid solutionwith 256x64(16,384)cells.

Figure 61showsthe surfacepressurecoefficientcomparisonbetweentheNASCART-

GT solutionsand the resultsfrom CasaliniandDadone. The flat wall and curved wall

,_olution._ ,_how little, differe.nee_ he tween _aeh c_thor They hnth e,_ntllr,_ th ..... t_ ..... 1,.

near the leading edge reasonably well, and slightly over-predict the lower surface pressure.

In general, the agreement between the reference solution and the NASCART-GT surface

pressure coefficient distributions is good.

Figure 62 shows the skin friction coefficient comparison between the NASCART-GT

solutions and the results from Casalini and Dadone. Here, the leading edge skin friction

coefficient is not well resolved until x/L of 0.1 on the upper surface and 0.15 on the lower

surface. This is simply a grid resolution problem that would require multiple levels of grid

cells along the body to reasonably capture the leading edge effects, which is currently not

an option in NASCART-GT. Adding this functionality would require careful examination

of the viscous stencil positivity criteria discussed by Coirier [38] in order to ensure that

non-smoothness is not introduced into the solution. Notice that there are no large oscilla-

tions in the skin friction coefficient as was shown by other cut cell Cartesian approaches.

Generally, after the leading edge resolution problem, there is excellent agreement between

the reference skin friction coefficient and the NASCART-GT solutions.
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Figure 62: Subsonic Viscous NACA-

0012 Skin Friction Coefficient Interpo-

lated Reference Points

Figures 63 and 64 show the Mach contours for the fiat wall and curved wall solutions,

respectively. Figure 65 shows the Mach contours from the Casalini and Dadone reference.

All three figures use a AM = 0.05 for the contours. Both wall boundary conditions do

an excellent job of capturing the flow features throughout the computational domain. In

particular the recirculation region is clearly evident in both solutions. An examination

of the skin friction coefficients for both solutions shows that the separation point occurs

around x/L of 0.41 for the flat wall solution, which is 0.08 chords off of the location from

Casalini and Dadone of 0.33, and 0.42 for the curved wall solution, which is 0.09 chords

off.

Finally, table 11 shows the lift and drag coefficients for the flat wall and curved wall

cases. These results are again compared to the Casalini and Dadone references mentioned

above. The flat wall boundary condition over predicts the lift coefficient by 7.4% and
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slightly underpredictsthedragcoefficientby 0.4%. Thecurvedwall boundarycondition

alsooverpredictsthethelift coefficientby 6.9%andslightly overpredictsthedragcoeffi-

cientby 0.4%.

Table11: SubsonicViscousNACA-0012Lift andDragResults

Casaliniand
flat wall curvedwall Dadone[32]

Cl 0.422 0.420 0.393

Cd 0.252 0.254 0.253
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Figure63: MachContoursfor Subsonic
ViscousNACA-0012FlowFlatWall with
InterpolatedReferencePoints

Figure 64: Mach Contoursfor Subsonic
ViscousNACA-0012 Flow CurvedWall
with InterpolatedReferencePoints

\

Figure 65: Viscous Subsonic NACA-0012 Mach Contours from [32]
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Supersonic Viscous NACA-0012 Airfoil Flow

This test case is a NACA-0012 airfoil in a M= = 2.0 flow at an angle-of-attack of

o_ = 10 ° and a freestream Reynolds number of Re_. = 1000. The computational boundaries

are 1 chord ahead of the airfoil, 6 chords behind the airfoil and 5 chords above and 3 chords

below the airfoil centerline. Solutions are presented on a computational domain with a

root grid dimension of 24x24 and 6 levels of refinement. In addition, solution adaption is

performed every 200 iterations starting after 1000 iterations. Both solutions converged in

approximately 20,000 iterations. The final grids for the flat wall solution consists of 47,741

ceils and 48,088 cells for the curved wall solution. Also, a curvature maximum of 40.0

is imposed. Figure 66 shows the final grid for the curved wall solution. For this case the

reference points for the wall boundary conditions are determined using the interpolation

procedure.
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Figure 66: Final Computational Domain for Supersonic Viscous NACA-0012 Flow
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The resultsfrom this casearecomparedwith the results from Arminjon andMad-

rane[11], whoseresultscomparequitewell toacollectionof resultsfrom Cambier[28]and

MiJlleret al. [113] from aninternationalworkshoponcompressibleNavier-Stokessolvers.

TheArminjon andMadraneresultsarefromanunstructuredgrid solutionwith 7962ver-

tices. TheCambierresultsarefrom astructuredgrid solutionwith 193x72(13,896)cells,

andtheMiiller resultsarefrom a structuredgrid solutionwith 257x257(66,049)cells.

Figure67 showsthesurfaceoressure coefficient c_nmpnriso n between _h_, _,rA _r, ^ o'P

GT solutions and the results from Arminjon and Madrane. Both solutions generally show

excellent agreement with the reference data with slight differences on the upper and lower

surfaces after about 0.1 chords for about 0.1 chords. In general, there is nice agreement

between both solutions and the reference data and no significant differences between the

curved wall or flat wall solutions.
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Figures68and69showtheMachcontoursfor thefiat wall andcurvedwall solutions,

respectively.Figure70 showstheMachcontoursfrom theArminjon andMadranerefer-

ence.All threefiguresuseaAM = 0.1for thecontours.Bothwall boundaryconditioncases

do anexcellentjob of capturingthe flow featuresthroughoutthe computationaldomain.

Thebow shockis crisply capturedin bothsolutionswithout anynoticeableoscillations.

Finally, table 12showsthelift anddragcoefficientsfor the flat wall andcurvedwall

cases.Theseresultsarecomparedto theCambierandMfi!!er referencesmcntionedabove.

The flat wall boundaryconditionslightly under-predictsthe lift coefficientby 1.8%com-

paredto Cambierandby 0.7%comparedto Miiller. For thedragcoefficient,theflat wall

over-predictsboth results,by 1.8%and2.7%.Thecurvedwall boundaryconditionis be-

tweentheresultsof CambierandMiiller witharelativedifferenceof 0.4%and0.8%respec-

tively. For thedragcoefficient,thecurvedwallboundaryconditionslightly over-predicted

by 0.7%and1.7%.

Table12:SupersonicViscousNACA-0012Lift andDragResults

flat wall curvedwall Cambier[28] Miiller [113]

Cl 0.3364 0.3415 0.3427 0.3388

Ca 0.2583 0.2554 0.2535 0.2515
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Figure68: MachContoursfor Supersonic
ViscousNACA-0012 Flat Wall with In-
terpolatedReferencePoints

Figure69: MachContoursfor Supersonic
ViscousNACA-0012Flow CurvedWall
with InterpolatedReferencePoints

Figure70: ViscousSupersonicNACA-0012MachContoursfrom [11]
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Transonic Inviscid ONERA M6 Wing

This test case is an inviscid flow around an ONERA M6 wing in a M._ = 0.84 flow at an

angle-of-attack of a = 3.06 °. The computational boundaries are 4 root chord lengths away

in the x-, y- and z-directions. The solution is presented on a computational domain with a

root grid dimension of 34x34x34 and 6 levels of refinement. In addition, solution adaption

is performed every 500 iterations starting after 1000 iterations. The solution presented is

after approximately 5300 iterations. The final grid for this case consists of 404,400 cells

with 21,556 surface cells. As in the NACA-0012 cases, a curvature maximum of 40.0 is

imposed in order to limit the pressure gradients caused by the highly curved regions of the

leading edge. Figure 71 shows the final grid for this case. For this case the reference points

for the wall boundary conditions are determined without using the interpolation procedure.

t
J

f

Figure 71: Final Computational Domain for Transonic Inviscid ONERA M6 Flow

137



Theresultsfrom this casearecomparedwith theresultsfrom AGARD Advisory Re-

port (AGARD-AR-138) results[146] andAGARD Advisory Report(AGARD-AR-211)

results [119]. The AGARD-AR-138dataisexperimentaldataperformedfor a veryhigh

Reynoldsnumber, 11.72x106,in order to minimize the displacementthicknesseffects

causedbytheboundarylayer.TheAGARD-AR-211datais acollectionof computational

resultsfrom severalresearchersfor aninviscidsolutionto thisproblem.TheAGARD-AR-

"9 | 1 on'r'nn, lf._t._,"_n.-,l _a._,,l*, have ":--:'::-_-'-' .... ' ""........ v ........... ,_o,_o _l_m_t_autty more resomuon at the leading edge compared

to the NASCART-GT geometry with approximately 4 cells from the AGARD fine grid so-

lution fitting into the leading edge cell of the NASCART-GT geometry. However, once

the leading edge section is passed, the cell sizes between the fine AGARD computational

results and the NASCART-GT geometry are nearly equal. Thus, it is reasonable to expect

that the leading edge resolution of the NASCART-GT results will not be as accurate as the

AGARD computational results.

Figures 72 through 77 show the surface pressure values at several span-wise locations

for the NASCART-GT solution and the AGARD-AR-138 results. As with many of the

other cases presented above, more leading edge resolution is needed in order to accurately

capture the rapid suction peaks, especially near the root of the wing on the upper surface.

As is typical in inviscid solutions [3], the upper surface shock locations are slightly aft of

the experimental results due to the neglect of the boundary layer effects. For the inboard

sections, figures 72 through 75, there are two separate shocks on the upper surface that

are present in the experimental results, however the inadequate leading edge resolution
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preventsthe capturingof the first. After thefirst shock,there is betteragreement.The

lowersurfaceshowsexcellentagreementthroughoutall of thefigures.

A directioncomparisonof theNASCART-GTresultswith other inviscid solutionsis

difficult becauseothersolutiontechniquesarenot limitedto asinglecell sizethroughoutthe

entiresolidsurfaceasisNASCART-GTin orderto propertyhandlethemodelingof viscous

flows. However,otherinviscidsolutionsalsopredictthestrongershocklocationaft of the

exoerimentallocation fnr _m,,l_ ral ....11_ ........ ......v -,_ t-,J as _,_1, as the AGARD-AR-2i i computational

results, with generally good agreement with the NASCART-GT locations.

Figures 78 and 79 show the Mach contours on the upper surface of the wing for NASCART-

GT and the AGARD-AR-211 results, respectively. Both figures use a AM = 0.05 for the

contours. In these figures it is apparent that there is a lambda-shock structure on the upper

surface with NASCART-GT only capturing the second shock and the top of the lambda. It

appears that the first shock, the weaker of the two, is close to forming in the NASCART-GT

solution.

Figures 80 and 81 show the Mach contours on the lower surface of the wing for NASCART-

GT and the AGARD-AR-211 results, respectively. Both figures use a AM = 0.05 for the

contours. Here there is nice agreement between the two results with only slight differences

in the center of the mid-span region where there is some discontinuity in the NASCART-GT

contours.
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Figure 73: Transonic Inviscid ONERA M6

Surface Pressure Coefficient at z/L = 0.44

without Interpolated Reference Points
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Figure 74: Transonic Inviscid ONERA M6

Surface Pressure Coefficient at z/L = 0.65

without Interpolated Reference Points

Figure 75: Transonic Inviscid ONERA M6

Surface Pressure Coefficient at z/L = 0.8

without Interpolated Reference Points
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Figure 76: Transonic Inviscid ONERA M6

Surface Pressure Coefficient at z/L = 0.9

without Interpolated Reference Points

Figure 77: Transonic Inviscid ONERA M6

Surface Pressure Coefficient at z/L = 0.95

without Interpolated Reference Points
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Figure 78: Transonic Inviscid ONERA M6 Upper Surface Mach Contours without Inter-

polated Reference Points

Figure 79: Transonic Inviscid ONERA M6 Upper Surface Mach Contours from [119]
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Figure80: TransonicInviscid ONERAM6 LowerSurfaceMachContourswithout Inter-
polatedReferencePoints

__---._._----.__ -

Figure 81: Transonic Inviscid ONERA M6 Lower Surface Mach Contours from [119]
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CHAPTER VI

PARALLELIZATION RESULTS

With the modifications made to flowCart (the flow solver part of CART3D) mentioned in

Chapter iv', tests were performed to demonstrate the parallelization characteristics of the

MPI version of flowCart. This chapter discusses the parallelization performance of the

MPI version of flowCart and compares the results to the OpenMP version as well as other

published results for similar configurations.

Test Hardware Description

There were two separate hardware configurations used to test the MPI parallelization en-

hancements, the first was an Origin 2000 for the shared memory tests, and the second was a

heterogeneous cluster of SGI workstations connected by Gigabit ethernet for the distributed

memory tests.

Shared Memory System Configuration

The shared memory hardware used for these tests was part of NASA Ames Research

Center's NAS (NASA Advanced Supercomputing) Division CoSMO/NAS/HPCCP clus-

ters. The machine, Lomax [117, 118], was a 256 node Origin 2000 with 2 400 MHz R12000
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CPUsper nodefor a total of 512 availableprocessors.Eachnodecontained768 MB of

memory(with approximately700MB availablefor applicationuse)for atotal of 192GB

of memory.Eachnodealsocontained32KB of on-chipL1 cacheand8MB of externalL2

cache.Thememoryhierarchywasasfollows:

• CPUregisters

• L1 instructioncacheanddatacache

• L2 unified (instructionanddata) cache

Local main memory

Remote main memory

• Hard disk

with the latency associated with memory accesses increasing down the list.

The operating system on Lomax was SGI Irix v6.5.10f. The executables were compiled

with SGI MIPSPro FORTRAN 77 and C compilers v7.3.1, lm using the -0fast optimiza-

tion flag in 64-bit mode. The OpenMP and MPI parallelization libraries used were the

libraries supplied by SGI Message Passing Toolkit vl.4.0.0.

Distributed Memory System Configuration

The distributed memory hardware used for these test was a cluster of SGI workstations

at NASA Ames Research Center. The cluster, Cluster T27B [116], was composed of 19
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SGIworkstations,14Octaneand5 Octane2machines,with processorspeedsvaryingfrom

250MHz to 400 MHz andavailablememorybetween896MB to 3584MB (seeTable13

for the configurationof the specificmachines).The clusterwasconnectedusinggigabit

ethernet.

Table13:DistributedMemoryClusterInformation

Machine ProcessorType ProcessorSpeed Memory OS
_,,1,,,,) (MB)

Octane 1 × R10000 250 1280 IRIX v6.5.13m
Octane 2 × R10000 250 2048 IRIX v6.5.13m
Octane 2 × R10000 250 2048 IRIX v6.5.13m
Octane 1 × R12000 300 896 IRIX v6.5.13m
Octane 1 × R12000 300 1024 IRIX v6.5.13m
Octane 1 × R12000 300 2048 IRIX v6.5.13m
Octane 1 × R12000 300 2048 IRIX v6.5.13m

Octane 2 × R12000 300 2048 IRIX v6.5.13m

Octane 2 × R12000 300 2048 IRIX v6.5.13m

Octane 2 × R12000 300 2048 IRIX v6.5.13m

Octane 2 × R12000 300 2048 IRIX v6.5.13m

Octane 2 x R12000 300 2048 IRIX v6.5.13m

Octane 2 × R12000 300 2048 IRIX v6.5.13m

Octane 2 x R12000 300 2048 IRIX v6.5.13m

Octane2 2 × R12000 360 2304 IRIX v6.5.13m

Octane2 2 × R12000 360 2304 IRIX v6.5.13m

Octane2 2 × R12000 360 2304 IRIX v6.5.13m

Octane2 2 × R12000 360 3584 IRIX v6.5.13m

Octane2 2 × R12000 400 2304 IRIX v6.5.14m

The operating system on each of the machines was SGI IRIX v6.5.13m (except for one

Octane2 machine which had SGI IRIX v6.5.14m, see Figure 13). The executables were

compiled with SGI MIPSPro FORTRAN 77 and C compilers v7.3.1.2m using the -0fast
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optimization flag in 64-bit mode. The MPI parallelization library used was the MPICH [65]

library v 1.2.1.

Parallelization Quantization Methodology

In order to provide an accurate assessment of the peak performance of flowCart in a parallel

processing environment, the following procedures were used to create the results. In order

to objectively compare the parallelization results, the same processors needed to be used

for the entire range of speedup cases. Thus, the maximum number of processors to be used

was allocated at the beginning of the tests and each speedup case used a subset of these

processors. Since there was no guarantee that the optimal processor allocation would be

obtained for any particular run, three runs of 20 iterations were performed for each set of

processors and the best timing was taken. This also minimized the effects of any memory

bandwidth and CPU contention caused by other users on the systems. Finally, to remove

any one-time initialization costs, the reported time for each run was taken to be the time for

the 1st iteration subtracted from the 20 th iteration. The elapsed time for each iteration was

recorded using the standard UNIX function getrusage to get the elapsed user time for the

process with microsecond resolution.

Shared Memory Results

Since some of the modifications made to flowCart were to the core functionality (such as

the overlap control volume exchange data structures discussed on page 97), a comparison
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betweenthenewOpenMPfunctionalityandexistingparallelizationresultswasperformed.

Figure83showsthespeedupfor thenewflowCart-OpenMPcodeusingup to 64processors

comparedto Bergeretal. [22]results(labeledBerger-2000),Mavriplis [98]results(labeled

Mavriplis-2000)andtheidealspeedup(labeledIdeal).TheflowCart-OpenMPandBerger-

2000casesusedapproximately1.0million controlvolumes,while theMavriplis caseused

approximately3.1million controlvolumes.Ascanbeseenin Figure83, thereis excellent

agreementbetweenall threecaseswith n _li_ht cl_oro_e,_ ;,,, ,-,,_,w ...... ¢__ ,.u_ ._ ....

case which is most likely cased by a poor distribution of the allocated nodes over the pro-

cessors. Analyzing the run times for the 32 node flowCart-OpenMP result shows a wide

variety between the slowest run (66.669 s) and the fastest run (51.463 s), which results

in a 30% difference between the these two cases, while the other runs typically had a 7%

difference between their slowest and fastest time.

Figure 82: Sample Solution of ONERA M6

Wing Parallelization Case

64

32

==- 16
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2
2

i i i i
flowCart-OpenMP _ ,_

Berger-2000 ---x--- /,,f
Mavdplis-2000 --- _--. .z/_#"

I I I I I

4 8 16 32 64

num. processors

Figure 83: OpenMP Speedup Results Com-

pared to Published Data

Figure 84 shows a comparison between flowCart-OpenMP and flowCart-MPI using the

same 1.0 million control volume grid used above. For up to 16 processors, the speedup
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curvesarequitesimilar.For the32processorcase,bothsetsof resultsbeginto deteriorate

dueto thepoor distributionof processorsmentionedabove,with flowCart-MPIshowing

lessdegradationin performance.Forthe64processorcase,bothspeedupcurvesshowim-

provementscomparedto the 32processorcase,with fiowCart-MPIshowingsuper-linear

speedup.This is causedby thefact that thepartitionsizesarevery small (approximately

16,000control volumes/processor).Thus,most of the datacanexist in the processor's

cache, ra_llltlng in c_ern;4qc.¢_'l-, 4--"........ , '.... - ............. r_.......... .r Icss um_ _cqulrea to access data than if the data resided in

the nodes local memory. This super-linear speedup has also been demonstrated by other re-

searchers [98] as shown in Figure 86. This effect is less pronounced for fiowCart-OpenMP

since it utilizes pointers for the IPC and not shared memory buffers as MPI. This also ex-

plains why flowCart-MPI does not show as drastic a penalty as flowCart-OpenMP does for

the 32 processor case.

One final comparison of interest between fiowCart-OpenMP and flowCart-MPI is the

timing results, Figure 85. Overall flowCart-MPI is within 5% of the flowCart-OpenMP

times excePt for the 64 processor case where the cache benefits discussed above result in

flowCart-MPI being 15% quicker than flowCart-OpenMP, see Table 14. This result seems

counter-intuitive since fiowCart-MPI is at the very least having to perform a buffer fill

and empty (assuming that the buffer exchange occurs as a shared-memory operation) while

fiowCart-OpenMP does not. The most likely cause is that as the number of control volumes

per processor decreases, there is going to be many short requests for memory addresses in
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theflowCart-OpenMPdueto theway thatinformationis exchanged,while the flowCart-

MPI informationexchangeoccursasa few largeblocksof data.Thusmemorycontention

mightbecomemoreof bottleneckfor flowCart-OpenMPwhenarelatively largefractionof

thecontrolvolumesareonprocessorboundaries.

Table14alsodemonstratestheimprovementsdueto thecachebenefitsthathavebeen

observedin otherfigures.

641-

32

4

2

flc,w,_.aii-_pe.MP _
flowCart-MPI ---x--- f/

I I I I I

4 8 16 32 64

num. processors

Figure 84: Shared Memory OpenMP and

MPI Speedup Results

1_0

100

, , , I

flowCart-OpenMP

10 i = I i
2 4 8 16 32 64

num. processors

Figure 85: Shared Memory OpenMP and

MPI Timing Results

Table 14: Shared Memory Timing Improvements for flowCart-MPI

num. proc. % Improvement

2 -1.9

4 -2.1

8 +4.1

16 +4.1

32 +4.9

64 +15.0

Finally, Figure 86 shows a comparison between a 3.1 million control volume case from
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Mavriplis [98]usingMPI anda1.0million controlvolumecasefrom flowCart-MPI.Again,

thereis goodagreementbetweenthetwocaseswith theperformancefrom Mavriplis show-

ing slightly betterspeedupdueto the largergrid andtheadditionalcomputationsthat are

beingperformed(viscousterms,GMRES,etc.). For the 64 processorcase both curves

show the same super-linear speedup caused by the cache benefits.

64

32

4

2

• f_owCarl._MPi _ ' /Mavriplis-2000 ---x---
Ideal --

I I I I I

4 8 16 32 64

num. processors

Figure 86: Shared Memory MPI Speedup Results Compared to Published Data

Distributed Memory Results

The distributed memory configuration results here are compared with the shared memory

results obtained from flowCart-MPI for the same 1.0 million control discussed above. Fig-

ure 87 shows the speedup results. Acceptable parallelization performance is demonstrated

up to 8 processors. After that point, the communication costs begin to overwhelm the

computational benefits for 16 processors. Figure 88 shows that there is only a 15% per-

formance penalty for using the distributed memory architecture until 8 processors. After
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that, the communicationcostsagainoverwhelmthe computations.Lueckeet al. [94] as

well asKremenetskyet al. [83] havedemonstratedthatthereis a significantperformance

penaltyusing theMPICH MPI library comparedto using the SGI MPI library for both

performancebenchmarkingapplicationsaswell assimilarly sizedCFD simulations.This

seemsto explaintherelativelypoorerdistributedmemoryperformanceresultscomparedto

thesharedmemoryresultssincetheMPI versionperformswell in theSGI sharedmemory

architecture.

i i i
DMEM tlowCart-MPI _ '

16 SMEM flowCart-MPI ---x--- /_ "l
Ideal

4

2 I i
2 4 8 16

num. processors

Figure 87: Distributed Memory

Speedup Results

MPI
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DI_EM flowCad-_lPI -----4----

"'_EM flowCart-MPI "--x-'- 1.....

10 I t
2 4 8 16

num. processors

Figure 88: Distributed Memory MPI Tim-

ing Results
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CHAPTER VII

CONCLUSIONS

This research has provided insight into ways of extending the functionalities of Cartesian

grid solvers into viscous effects modeling via novel boundary condition treatments and

MPI parallelization. The non-smoothness associated with the non-positivity of the viscous

flux stencil for the surface cells have been minimized in NASCART-GT by separating the

surface cells from the finite volume formulation that is used to solve the rest of the compu-

tational domain. While the surface cells are not part of the finite volume formulation, their

state is still determined by applying physically based conditions that are consistent with

the boundary conditions associated with the surface. Additionally, the parallelization func-

tionality of CART3D has been extended to use MPI as its parallelization library without

significant impact to the parallelization speedup or total run time.

Solid Boundary Treatment

The new viscous solid boundary treatment developed for NASCART-GT removes the sur-

face cells from the finite volume formulation in order to address the non-smoothness and

small time steps associated with the cut cell treatment. The state at the surface cells in deter-

mined by applying interpolation functions and the solid surface boundary conditions with
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eitherflat or curvedwall approximations.Thisnewtreatmentshowssignificantprogress

towardsutilizing cut cell Cartesiangrid methodsfor generalbodiesin viscousflows. In

all casespresented,the interpolationformulationsproducereasonableresultswithout the

non-smoothnessproblemsassociatedwith thestencilpositivity in theviscouscases.The

integratedquantitiesof lift anddragarewell predictedwith both theflat wall andcurved

wall boundaryconditions,with thecurvedwall boundaryconditionstypically producing

slightly hette, r re_nlt_ Th_ enllcl e,1,-¢ ........ *'*: ...... 1,.............................. ,t,_,,,,,L_,_ compare we_ to existing results, with

some cases showing difficulties near the leading edge. This difficulty is caused by the

uniform surface cell size limitation imposed by the viscous scheme in order to avoid the

viscous stencil positivity problem. Even when the leading edge region is not captured ac-

curately, the curved wall boundary condition does a better job of predicting the surface

features.

In terms of capturing the overall flow field characteristics, both schemes performed well

in all cases. In general, the curved wall boundary condition formulations have improved

the ability to capture the surface quantities in the highly curved regions of the surface for

the inviscid cases and produced only marginal improvements in the viscous results. The

fluctuations in the pressure and skin friction coefficients have been nearly eliminated by the

use of the interpolated reference points in the boundary condition formulations.

These results indicate that the original algorithmic problem of solving the Navier-

Stokes equations on Cartesian grids due to the viscous stencil positivity has been converted

into a computational problem of being able to allocate enough memory and CPU time to

153



adequatelyresolvetheentiresurface.At thesametime,the inviscidformulationsonCarte-

siangrids can takeadvantageof the lessstringenttime steprestrictionsby removingthe

smallcutcells from thefinite volumeformulation.

Parallelization Enhancements

The parallelization enhancements oerformed on CARTqI3 dornnn_trnto n orm,,ore;,',,, ,',¢ a
A -- ................ _v _ vvAaV_,XOaVAI _'lt

domain-decomposition flow solver implemented with OpenMP to a strict MPI message-

passing structure. In all cases the MPI version performed as well as, or better than the

already good performance of the OpenMP implementation. Moreover, the MPI paralleliza-

tion performance also compares well to other published results. Near linear speedup has

been demonstrated for up to 64 processors with a 1.0 million control volume grid using the

MPI parallelization without adversely affecting the wall-clock timings for shared memory

architectures, while reasonable speedups have been demonstrated for similar solutions on a

distributed memory architecture. Using MPI for the parallelization library allows CART3D

to be used in a shared memory environment without any performance penalties compared

to OpenMR as well as in a distributed memory environment where the OpenMP version

was not able to be used.

Three-Dimensional Viscous Modeling

The final question in this research is how feasible is it to solve the Navier-Stokes

equations for three-dimensional bodies using this new surface cell treatment. In order
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to answerthis questiona quick analysisof thecurrentperformanceof NASCART-GTis

needed.Using similar techniquesto checkthetiming of NASCART-GTthat wereused

in theparallelizationperformancestudyof CART3D, the computetime for NASCART-

GT is approximately4.0x10-4s/cell/iterationon a 500 MHz AMD-K6(_) processor(ig-

noring grid generationand file input/outputtimes). This valuescaleslinearly with the

numberof cells and the numberof iterations. Assumingthat the computetimings can

be halvedbv upgradingtn higher .,l_u,., components ".... '-, t_u_u as faster memory as well as

faster and more up-to-date CPU) and a factor of five improvement from performance ac-

celeration techniques (such as multigrid, GMRES and higher order temporal integration),

then the amount of time needed for NASCART-GT to compute one cell in one iteration

is approximately 4.0x10 -5 s/cell/iteration. Assuming that a reasonable geometry can be

modeled using 10 million cells (a conservative number in general, but certainly appro-

priate for low Reynolds number, Re _ 1000, simple three-dimensional geometry flows)

and that 50,000 iterations are required, then the amount of time it would take to solve the

case is approximately 240 cpu-days. Now, taking the parallelization speedup results that a

1 million cell case can scale near linearly up to 64 processors and extrapolate that out to a

10 million cell case that has more computations per iteration, then it is reasonable to ex-

pect near linear speedups for 640 processors for this case (ignoring bandwidth limitations

and other hardware related issues). Using these numbers, then an efficient, parallelized

NASCART-GT solving a 10 million cell problem on a computational environment using

current state-of-the-art hardware is projected to be possible in approximately 9 cpu-hours.
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This is areasonableturn-aroundtimefor full three-dimensionalviscousflows.However,to

modelacompleteflight vehicleat areasonableReynoldsnumber,Re ,_ 107, might require

as much as 40 million cells or more. This means that a complete flight vehicle could take

2 cpu'days to complete, a less reasonable but still manageable amount of time. Thus, it is

imperative that parallelization be utilized along side the new surface cell methodology in

three-dimensional Navier-Stokes Cartesian solver along with aggressive acceleration tech-

nioues, in order to solve a three-dimensional ,,i._o,,,_,s..... ,,,,,,._....

Future Work

This research has shown that the two most common current limitations in Cartesian grid

solvers have been addressed, however there are more improvements in both areas that can

be accomplished in future work.

Extending the Current Surface Cell Modeling

While, these results show significant improvements in the handling of viscous solutions

on Cartesian grids, there are several areas of research that need to be examined further. In

order to address the accuracy problems in the leading edge regions of the surface, the

functionality of having multiple levels of refinement on the surface needs to be added to

NASCART-GT. This needs to be carefully studied since Coirier showed non-smoothness

problems can arise even in regions where the cell sizes change is comparable to the changes

at a refinement boundary. One possible approach to these surface refinement regions is to
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useaviscousflux reconstructionstencilbasedon themodifieddiamond-pathGreen-Gauss

developedby Delanayeet al. [49].

In aneffort to improvethe accuracyof theinterpolationformulations,moresophisti-

cated wall modeling techniques should be investigated. Specifically, modeling the states

along the interpolation line with analytical solutions, such as analytical boundary layer

modeling, should be studied. In addition, extending the applicable range of solutions from

laminar to turbulent boundary layar_ _hcmlrt nlec_ h,_ ; ..... _;,-..,,_A

Finally, a larger class of test cases should be studied to find any deficiencies in the wall

boundary formulations. Cases that focus on phenomena such as shock wave/boundary layer

interactions will further validate the ability of NASCART-GT to model these processes.

Larger ParaUelization Problems

As for the parallelization enhancements made to CART3D, a study into the paralleliza-

tion performance for datasets comparable to the sizes expected for viscous calculations,

tens of millions of cells, should be performed. This will further validate the practicality of

solving the Navier-Stokes equations on Cartesian grids. Also, investigations into ways of

addressing the bandwidth limitations found in the distributed memory results might prove

useful. In particular, a method of scheduling the IPC steps in order to not saturate the

available bandwidth might eliminate the performance penalty associated with network col-

lisions on an ethernet based distributed memory architecture. This research might prove

useful even on shared memory architectures when very large numbers of processors are
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required(saymorethan2000)to solveextremelylargeproblemsthatcouldarisewith the

additionof turbulencemodelingin highReynoldsnumberthree-dimensionalflows.
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APPENDIX A

GOVERNING EQUATIONS IN GEODESIC

COORDINATES

This appendix develops the fluid dynamics equations in general curvilinear and geodesic

coordinate systems. The geodesic coordinate system is first developed and is followed by a

brief presentation of the governing equations in vector form. Finally, the full Navier-Stokes

equations, the boundary layer equations and the Euler equations are then presented in two-

and three-dimensions.

Coordinate System Basics

This section presents the basic definitions and descriptions required to develop the geodesic

coordinate systems. It starts with a description of the more general curvilinear coordinate

system and is followed by the geodesic coordinate system definition. Next the length ele-

ments and various curvatures are defined. Finally, all of the required vector operations are

presented.
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Curvilinear Coordinate System

The curvilinear coordinate system used here is simply a three-dimensional space with

coordinate directions (_, 7/and () that form a vector basis in the _3. There is no orthogo-

nality requirement on the coordinate directions, just the following mapping requirement

= _ (x,y,z)

'1 -- II k'%Y_)

(=_(x,y,z)

ifl'_\

and the equivalent reverse mapping which holds when _, 7"/and ( form a vector basis

y (70)

Geodesic Coordinate System

The geodesic coordinate system used here consists of a surface with coordinates,

and (, and the surface normal creating the third coordinate, r/, orthogonal to _ and (, see

Figure 89. Notice that in general _, 7/and _ are all functions of the Cartesian coordinate
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X

Figure 89: Example Geodesic Coordinate System

directions, x, y and z, i.e.

=_(x,y,z)

11= 11(x,y,z)

(=_(x,y,z)

(71)

As long as the geodesic coordinate system forms a vector basis of the Cartesian coordinate

system (which it will as long as _ and _ are not collinear) then the following also holds

(72)

z=z(_,o,_)

Differential Length Elements

A differential arc length element in the Cartesian coordinates is defined as

(as)2= (dx)2+(ay)2+ (az)2 (73)
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which is canalsobedefinedin thegeodesiccoordinatesby substituting(71) into (73) to

get

where

(ds)2 (h_d_)2 2= + +

¢Ox'_ 2 (o3Y) 2 (OZ'_ 2@0)2
=\00) +. ._ +\0--_)

f,, _2 (ax)2, (ay'_: (az_ _
v'u = \_) -'-t,_) + k-_)

(74)

with h_, hrl and hg being the differential length elements in the _-, 71- and F-directions,

respectively.

For the curvilinear coordinate system, the differential length elements are described as

he =h¢(¢,0,_)

h_= h_(,_,n, ;') (75)

h_ = h_(_,r/,_)

In the geodesic coordinate system, r/is orthogonal to _ and 5, and h_ is only a function of

77. Without loss of generality, hr_ can be assumed to be unity. Thus, the differential length

elements can be described as

(76)

h_ = h£(_,r/,_)
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Further,if the curvilinearcoordinatesystemis only two-dimensional,thenthedifferential

lengthelementssimplify to

he

ho =ho

h_ = 1

(77)

and for the two-dimensional geodesic coordinate system, then the differential length ele-

ments simplify to

h e = h_ (_,rl)

hr;=l

h_=l

(78)

Curvature Definitions

Three-dimensional geodesic coordinate systems have 6 curvatures that can be defined

related to the differential length elements. They are expressed as Kab with a being the

constant coordinate for the surface and b is the coordinate direction of the curvature. For a

general curvilinear coordinate system, the curvatures are defined as

1 Oh n 1 Oh_

K_rl -- h_hrl c3_ K_ -- hgh_ ¢9_

1 c3h_ 10h_

Kn_ = hch n Orl Kn_ -- hrlh_ 071

1 cghg 1 Oh n

K_¢ -- h_hg O_ Kgn -- hnh _ O_

(79)
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Forthegeodesiccoordinatesystem,thecurvaturesbecome

K_r I =0

10h_

Kn_ = h_ 011

10h_

K_ = h_h_ tg_

1 Oh_

-
1 Oh;

Kn£ = h_ 011
(80)

For example, the first curvature in (80), K¢_, is the curvature on the constant _-surface

in the 11-direction. Notice that for this curvature, since 7"/is independent of _ (and 5) in

the geodesic coordinate system, this curvature is identically zero. Thus, of the six possible

curvatures, only four are pertinent to this particular coordinate system.

The two-dimensional form of the curvatures is found by using (77) for the curvilinear

coordinate system to get

1 Ohrl

K_rs -- hr_ ¢9_

10h_

Kng - h_ 311
(81)

and (78) for the geodesic coordinate system to get

K_r 1 =0

10h_

Krl_ - h_ 011
(82)

resulting in only the Krl _ curvature as non-zero.
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Vector Operations

For a general curvilinear coordinate system, several vector operations take slightly dif-

ferent forms. Since the curvilinear coordinate directions may not be linearly independent,

they must be included in any derivative calculation. Thus, all of the formulations utilize the

following expressions for the derivative of the coordinate directions for the _-direction

(RTI

the o-direction

(84)

and the F-direction

(85)

Gradient Operation

The gradient operation for a scalar, a, becomes

1 ,9_ 1 ,ga 10a
(86)

which in two dimensions becomes

(87)

For the geodesic coordinate system, the gradient operation becomes

1 Oa_ Oa 1 Oa
(88)
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which in two dimensionsbecomes

Divergence Operation

Va-- (89)

The divergence operation for a vector, a, is found by starting with

which, when the derivatives of the unit vectors are used, becomes

1 0a¢ 1 0at1 1 0a¢ ( 1 Oh n 1 0hff
V.a- he O_ + h---o0----_+ h-T 0----(+ \ h_hrl o_ + h¢h_ o3_ J a¢

+ h{-hr_ 071 +hrlhg-_ ,Jar1+ h_hg O_ + hrzhg O_ a_

Which can be rewritten as

_7, a _ _

1 cga_ 10a n 1 °3a_

he O_ + h n OrI -_ he O_

(90)

(91)

(92)

The two-dimensional formulation for this is

V" a "-- 10a n +Kcna¢ + Kncan
-Fhn 071

(93)
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Forthegeodesiccoordinatesystem,thedivergenceoperationbecomes

V°a m

1 03a_ 03an 10a¢

he a¢ +-_- +h_a_ _-K¢_a_ + (Krl _ + Krl_)a 0 + K_a_

The two-dimensional formulation for this is

(94)

Curl Operator

10a¢ 03an

V .a - h_ O_ _- --_ + Krlcarl
(95)

The curl operator for a vector, a, is found by starting with

which, when the derivatives of the unit vectors are used, becomes

(96)

(97)
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Whichcanberewrittenas

V×a=

+

+

1¢ Oa_o_

'( 1 Oa n, fi_o_

]h_ Of + Kn_a_ - K_rlan _

1 Oa_ I
hg O_ / +K_ga_ -K_a_ Yr/

1 aag )h. 077 + K_r/a. - K_a_

(98)

In two dimensions this is

V×a=
[(/_¢ Oar/ 1 Oa_10_ hn Orl ) +K_r/an-Knca_] i_

(99)

For the geodesic coordinate system, the curl operation becomes

Vxa=

+ o_

[(Oaff 10an )

1 Oa_)+K_gag-K_ ]_r/

Oa_ )071 - Kr/ga_ f_

(100)

For the two-dimensional geodesic coordinate system, this becomes

1 Oa n Oa_ ]Vxa= h-{ O{ Or/ Kn_a_ t_
(101)
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Laplacian Operator

The Laplacian operation for a scalar, a, is combination of the gradient and divergence

operators from above. Applying these operators yields

V2o_= 1 020_

h_ O_ 2

1 O2a 1 O2a
----+ _-

h_,0112h_0¢2
10ho_ - 1 o3h_

.h_hrl O_ +

10h_

h_h_ O3_ h_ O3_

10h_ 1 o3hg 1 o3hrl

.h_hrl 011 + hoh( 011 -h 7 -_

1 Oh{ 1 Oh_ 1 Oh(

.hghg o3¢ hnh _ o3¢ h_ o3¢

o30_

o3_

o3a

Oa

o3¢

(102)

Which can be rewritten as

In two dimensions this is

1 O2a 1 o32a
+ +

h_a112h_O3¢2
1 o3h{

1 o3ho" o3a

Kng+K"_ h_ O311 ,:711

1 o3h¢] o3a

(lO3)

lO.lO.
<)[ lO,-

(104)
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For the geodesic coordinate system, the Laplacian becomes

+

In two dimensions this is

(105)

1 t?2a 02a 10hg cga q_Kn t?aV20_- h2 tg_ 2 + rgn2 h3 ,,_J: _¢:

g • _ - "l "'_ _'a "_ "" "U

(106)

Governing Equations in Vector Form

The most general expression of the governing equations that is independent of any co-

ordinate system is the vector form of the governing equations. This section presents the

governing equations in the vector form.

Continuity Equation

The continuity equation is simply a statement of the conservation of mass for a control

volume in space. There is a balance between the density change inside the control volume

and the mass flux through the control volume surfaces. In differential form this is expressed

as

0/9
a---t+ V. (pu) = 0 (107)
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Momentum Equations

The momentum equations are a statement of Newton's Second Law of Motion for a

control volume in space. This balances the momentum change within the control volume,

the momentum convected through the control volume surfaces, the body forces being ex-

erted on the control volume, the pressure gradient across the control volume and the viscous

stresses applied to the control volume surfaces. In differential form this is expressed as

Ou
p -_ q-- pu. Vu : Pfbody -- Vp q- V. IT] (108)

where [7] is the second order stress tensor which can be represented as

_3

"C1,1 "171,2 7171,3

v2,1 v2,2 72,3

_3,1 _3,2 T3,3

Energy Equations

(109)

The energy equation is an expression of the First Law of Thermodynamics for a control

volume is space. This balances the energy change within the control volume, the energy

convected through the control volume surfaces, the temporal change in the pressure, the

temporal change in the heat production of the control volume caused by external processes,

the conductive heat loss through the control volume surfaces, the work done by the body

forces on the control volume, and the work done by the viscous forces. In differential form

this is expressed as

OH 0 pQ
p-_+pu.VH= -_tp +! _-+V. (kVT)+Pfboay.u+V.([Tl.u) (110)
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Governing Equations in Geodesic Coordinates

While many researchers have developed several variations of the fluid dynamics equations

in either geodesic or curvilinear coordinate systems, most have focused on the incompress-

ible boundary layer equations in two- or three-dimensions [72, 163] with others focused on

the Euler equations [140, 174] and little effort beyond [69].

b, Jnvi_.r_Rtnl,-¢_ _'nnntlnn_ in ('_.oncloe;t- ¢'_n,-_vtt;,_._l-oo

This section will develop the Navier-Stokes equations starting with the vector form of

the Navier-Stokes equations. They will be transformed into the general curvilinear coordi-

nate system and then the simplifications for the geodesic coordinate system will be applied

to get the final form of the Navier-Stokes equations in geodesic coordinates.

Fundamental Relations

In order to simplify the derivations to follow, some fundamental relations will be devel-

oped first that will be used throughout the Navier-Stokes equation derivation.
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Momentum Convection The momentum convection term starts out as

u. ar_ ue0r_)
-_ % an + he o%") u_

(111)

Utilizing the derivatives of the general curvilinear coordinate system found in equations (83)-

(85) this becomes

u. Vu =

+

+

+

+

+

(112)
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Substitutingthecurvaturedefinitionsthis becomes

+ u_-_+ u.-g_+ _ u_ r_

Ouff " 1 \ Ou.. / 1 \ Ou 1

+[,_,_u,u,+/_.,u.u,-,_.._- ,_,.u_],,

Applying the geodesic coordinate system simplification yields

..w= _ u_-+.,_+ _ u:_],_

+ _ u_-_+u,-_+ _ ,,,-_j,,

+ _ u_+u.-_+ _ u_-gj _

Finally, in two dimensions this becomes

u.Vu= 1 u .__ +url.__+Krl{u{ur _ _

+ _ u¢-_+., o,_

(113)

(114)

(1_5)
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StressTensor Thestrainexpressionsin thegeneralcurvilinearcoordinatesystemis

eg_= -ff_-+ h_r/

eo.---- -gO-+ h_.

Orl u° + h_h_ 0_ u_

-_ ) u_ + h_h_ 0_ u_

egg= _ + h_hg _ Ju_+ h_h(--_ Jurl
(116)

e_ = eff_ = _ + -_- h_h:_ )u_- h_h__ )u_

-0-_-_- h_h_ 0 5 )url- h_hg 011 u_

Applying the curvature definitions the strain expressions become

(117)
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Applying thestrainrelationsto thestresstensorformulationresultsin
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Utilizing thegeodesiccoordinatesystemsimplificationsresultsin

2

'rgg = g/.l 2 N c9{ Or/J

]

(119)

Finally, in two dimensions this becomes

'r{{ = 5# 2 c_ cgrl + 2Krl{Url

2 [ o_un (____)Ou_

) = -a-g+ on

(12o)

Throughout the equation development in the rest of this section, the stress tensor compo-

nents will take one of the above forms, depending on whether the curvilinear or geodesic

formulations are being developed.
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Stress Tensor Divergence The stress tensor divergence development starts with the ap-

plication of the divergence operation onto the stress tensor, noting that the coordinate di-

rections are not independent, to get

OxjV# and {i,j} e {_,r/,_}

(121)

In the stress tensor divergence expression, the first term is me.............mve_gcm.c ¢ _'_ ,r,,.,,o _t,-,,_

tensor vectors, and the second term is the divergence of the stress tensor coordinate direc-

tions. Expanding the zr term yields and collecting terms yields

(122)
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Forthegeodesiccoordinatesystem,thisbecomes

(123)

Forthetwo-dimensionalgeodesiccoordinatesystem,thisbecomes

[ 10"r_ O'r_r/] [lO'r_rlO'CrTr7]v. [_1= _;_a_ + a_ j _+ h_ a_ + a_ j _'
(124)

Stress Tensor Energy Dissipation The stress tensor energy dissipation relation develop-

ment starts with the expansion of the dot product inside the divergence operator to get

v-(I-c].u) = v. u-%

u. z_

(125)
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which,afterusingthedivergencerelationfor curvilinearcoordinatesystems,resultsin

1 0

v.([_1..)-he0¢(u_,_+._ +u_)

1 8
(126)

Applying the geodesic coordinate system conditions, this becomes

° (u_ +u,_.+._)v. (N..)- he a_

a

+_ (u_ +.._.¢+.c¢_)

(127)

Finally, for the two-dimensional coordinate system, this becomes

1 8
(128)
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Three-DimensionalFormulation

With all of the pieces of the three-dimensional Navier-Stokes equations developed

above, they now can be assembled to complete the derivation. First, the general curvilinear

coordinate system formulation will be presented, then the geodesic coordinate system will

be presented for each conservation equation set.

Continuity The continuity equation uses (107) and the divergence operator equation to

get

a--7+ a_ + a_--+ a_
(129)

In the geodesic coordinate system this becomes

a-;+ a_ + a_ a¢

+,_:p._+(% +_) p.,+,_:__._=0

(130)

Momentum The momentum equations use (108), as well as the momentum convection

and the stress tensor divergence to obtain the _-, 7/- and _-momentum equations. For the

curvilinear coordinate formulation, the stress tensors from (118) are the appropriate ones
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to beused.The_-momentumequationbecomes

Ther/-momentumequationbecomes

--g-_-+

(131)

(132)
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The_-momentumequationbecomes

+o[_u_u_÷K_u_u_-K_u_- _ 4]

=Pfbody, C-- _-_+ --ff_- + ---_+ _- _. (133)

- K_ z_ - K_n'rrln

Applying the geodesic coordinate system simplifications and utilizing the geodesic stress

tensor formulations (119) yields for the {-momentum equation

+p [Krl_u_url + Kg_u_ug-K{:u2_] (134)

+ K¢_'r{{ + (2Kr/_ + Kr/g) 'r{rr + 2Kg{ z¢( - K{_'r_g

with the 77-momentum equation becoming

= P f body, rl -- ff-_ q- -_ q- -_ -t- _ _

(135)
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andthef-momentumequationbecoming

(136)

Energy Theenergyequationuses(110),thecurvilinearvectoroperationsandthestress

tensorenergydissipationto become

OH 1 ,OH ,OH u¢-_

,OP ,OQ [U{fbody,{ q-urlfbody, r1 Jr" U_ebody,_ ]= ,O-7+--a7+0

+ _ k_+u_+u_,_+_&
O

[(<)o,
+(K_+K_) _+u_h_+u:_+.:_ _

aT+ ¢

(137)
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Applyingthegeodesiccoordinatesystemconditions,this becomes

=at7 aO . p
at .-t----_.-. [u_fbody,_ -t-urlfbody, r I -_-U(fbody,( ]

+ _ _ _,7,7 _

+ k-g-(+u¢.c_ +u,_%_ +u_r_

Two-Dimensional Formulation

(138)

With all of the pieces of the two-dimensional Navier-Stokes equations developed above,

they now can be assembled to complete the derivation. First, the general Curvilinear coor-

dinate system formulation will be presented, then the geodesic coordinate system will be

presented for each conservation equation set.

Continuity The continuity equation uses (107) and the divergence operator equation to

get

+K_npu _ +K_(purz =0 (139)
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In thegeodesiccoordinatesystemthisbecomes

a-7+

Momentum

+ a(purl) +KMpurl = 0 (140)
,gr/

The momentum equations use (108), as well as the momentum convection

and the stress tensor divergence to obtain the _- and 77-momentum equations. For the

curvilinear coordinate formulation, the stress tensors from (1 18) are the appropriate ones

to be used with the two-dimensional simplifications applied. The _-momentum equation

becomes

(141)

(142)

+ K{r t'r{{ + 2K_{ 'r{rI -K{r / 'rrtr/

The 77-momentum equation becomes

"_- p ybody, r l -- _ -'t- --_ "}" --_
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Applyingthegeodesiccoordinatesystemsimplificationsyieldsfor the_-momentumequa-

tion

(143)

with the77-momentumequationbecoming

p--_-+p ,,¢_-¢+u.-b-_-

=OYbo+,o- _ + -_- +

(144)

Energy The energy equation uses (110), the curvilinear vector operations and the stress

tensor energy dissipation to become

ap OQ + P
:"_+"_ [u, fbody,,+urlfbody, rl]

(145)
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Applyingthegeodesiccoordinatesystemconditionsandutilizing thegeodesicstresstensor

formulations(119)with thetwo-dimensionalsimplificationsapplied,this becomes

,gp OQ

+ (_--_) --_ [ (_-_)k_+u_,_+ur(rerr] (146)

+_ L o_+,.,¢'r¢_,

+ K,7¢//k aT u, v_.)\ _- +,,,¢'r¢,_+

Boundary Layer Equations in Geodesic Coordinates

The boundary layer equation will be developed from the Navier-Stokes equations and

applying the standard boundary layer assumptions to the general curvilinear and geodesic

formulations. In each formulation, the general curvilinear coordinate system formulations

will be presented followed by the geodesic coordinate system formulations.

Assumptions

The boundary layer equations start off with the following assumptions:

1. Boundary layer thickness is small, i.e. Re >> 1

2. Buoyancy effects are negligible, i.e. Fr >> 1
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Using theseassumptionsthe following canbe saidaboutmathematicalrelationsin the

Navier-Stokesequations

u n << u_ un << u¢

0 O 0 0

0--_ >> 3--_ 0---_ >> 0"_ (147)

f body _ 0

where the first and second conditions result from assumption 1 and the third condition

results from assumption 2.

In developing the boundary layer equations, an order of magnitude analysis will be done

on each equation in the Navier-Stokes equation and all of the smaller terms with respect to

the rest of the terms in each equation will be removed. In doing this process, the following
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magnitudesareusedfor eachgroupof termsin thegoverningequations

u¢~e(1)

u,_~ O'(e)

._~e(1)

p ,--, @(1)

,r-/~_(1)

p _6(1)

0
035 _ @(1)

a-_~ ¢(1)

a--ff~ e(1/e)

_@(1)

hi,j_ :(I) {i,j} e (_,rl,_}

Kid,-, 6(1) {i,j} e {_,rl,_}

(148)

where e << 1.

In preparation for the momentum and energy equation development, the shear stress

components can be analyzed separately with the lowest ordered terms removed. While

other terms might be removed later, it is assured that the lowest ordered terms will not re-

main. The stress tensor components (118) are reproduced here with the order of magnitudes
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under-seteachterm.

[1/1] [11 [e/el [1]

\ [l*g] [1.1] / [1.1] [1.1] [1.1] [l*e]

[ (,)
[I] [e/e] [I] [I/1] [I]

2Ic l+g,, 2 /%._ +/%u_ - %u, - _u_ -/q_u_- K,_u_
\ [1,11 [1.11 / [l,e] [1,11 [1,1] [l,e] .]

2[ (___)Ou[ (__7) Ou_ (_--_)Oun]/ej
[11 [1/1] [1] [1/1] [I]

2[c 1+-5" 2 K{¢u{ +Kn[ur 1 -Krgurl-K[{ug-K{nu{-K¢rlu _
\ [1.1] [l*e] ,] [l*e] [1.1] [1.1] [1.1] j

•_, =# -a-g+ -a-g-I%u,-%._
[e/l] [1] [l/e] [l*e] [1.1]

[1/1] [1] [1A] [1"11 [1.11

[l/e] [1] [e/1] [l,e] [1.1]

(149)
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It is clearthatall termsof order@(e) canbeignored,whichresultsin

Three-Dimensional Formulation

(150)

The three-dimensional formulation of the boundary layer equations starts with the

Navier-Stokes equations and then applies the boundary layer assumptions described above.

Each conservation equation set will first develop the curvilinear boundary layer equations

and then the geodesic coordinate system equations will be developed.
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Continuity ThecontinuityequationstartswiththeNavier-Stokescontinuityequation(129)

reproducedherewith theorderof magnitudesunder-seteachterm.

at + a_
[11 [1] [1/11

+

+ an a;
[1] [e/e] [1] [1]

[1] [1] ] [e] [1] ,] [1]

(151)

Thus, the terms of --'_^- @ r,-a _o,, be ,41mln_t_cl whie, h results in the followingUI Idl,,_l _ t.,, ] _..,WLXa _.* ............... _

oo
at + a_ _- a_ a¢ (152)

In the geodesic coordinate system this becomes

Op 1 0 (pu_) a (pun) +
a---[+ a_ 4 an aC +K_cpu_ +KCgpuC = 0 (153)

Momentum In order to simplify the order of magnitude analysis, all shear stress com-

ponents are first assumed to be the order developed above and then each remaining shear

stress component will be included into the equations and any further eliminations needed

can then be done. The shear stress terms will be evaluated separately from the rest of

the iterms in the momentum equations in order to retain both the shear stress and convec-

tive contributions. The _-momentum equation (131) is reproduced here with the order of
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magnitudesunder-seteachterm.

P-a7+° -+
[1/1] " [17" [1.1/I] [11 [¢*1/_;] [1] [I*1/1] J

"1

[1.1._:1 [1.1.11 [1,e2] [1,12] J

[1/1] \ [1/1] \ "(;i "" [(1/E:f/e] \[l_/ [1/1]

[1] / [11 [1] [1] / [1/e I [1] [I] / [1]

(154)

[1.1] [1.1]

For the shear stress terms, terms below order 6' (1/_ 2) can be ignored, while for the rest of

the terms, terms below order 6 (1) can be eliminated. Notice that the "c¢_ term is the only

remaining shear stress term, and recall that the only @(l/e) term in that shear stress term

is the c?u_/37"1 term. Thus the C-momentum equation for the curvilinear coordinate system

becomes

(155)
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which,whenincorporatingthegeodesiccoordinatesystemsimplifications,becomes

(156)

The r/-momentum equation (132) is reproduced here with the order of magnitudes under-

set each term.
I-

Ou n

p-ffi-- + P
[1/1]

'l

+ u N- [
[l*e/1] [1] [e,e/e] [1] [1,e/l] J

[l*l*e] [I*E*I] [1,12] [1,12] J

"-- P f body, r1 -- -_ -[- _ -}- _ _ ) -_ +
[o]

[1] [I/¢] [1] [(I/e)/1] [1] [l/S] [1] [(1/_)/1]

+ 2K_o+K_ )r7 + Krt_ +K_ 'V_rl+ _+2K_r _ Vr7c
[1] [1] / [l/e] [1] [I] / [1] [1] [1/e]

(157)

[1.1] [1.1]

To maintain consistency with the _-direction momentum development above, the shear

stress terms below order d? (1/e 2) are ignored, while for the rest of the terms in the r/-

momentum equation, terms below order C_(1) can be eliminated. What results is

(158)

and the formulation for the geodesic coordinate system is

(159)
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The _-momentumequation(133)is reproducedherewith theorderof magnitudesunder-

seteachterm.

8u_

PTi-
[1/1]

+P

[1.1/1] [11 [e*I/E] [1] [1.1/1]

[l*l*ll il*e*ll [1.12] [l*e 2]

=Pfb[oo_Y,,-- "_"}- "-'_'-_ -}'- --_- -t'-(_[1_])" _
ll ] [1/11 [1/1] [(1/_)/¢1 [1/11

[11 ] [11 [11 / [1/e I \ [1] [1]

(160)

- -
[1,11 [1,1]

To maintain consistency with the {-direction momentum development above, the shear

stress terms below order 6 (1/e 2) are ignored, while for the rest of the terms in the 77-

momentum equation, terms below order 6 (1) can be eliminated. Notice, as above, that

the "rrlg term is the only remaining shear stress term, and recall that the only 6(1/e) term

in that shear stress term is the t?u¢/Orl term. Thus the _-momentum equation for the

curvilinear coordinate system becomes

8p 0

(161)
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which,whenincorporatingthegeodesiccoordinatesystemsimplifications,becomes

P_+P _ _-a-(+"_ + _ u_+K_ u_u_-x_4

() (au_,'=-__

(162)

Similar to the momentum development, all shear stress components are first as-Energy

sumed to be the order developed above and then each remaining shear stress component

will be included into the equations and any further eliminations needed can then be done.

The energy equation (137) is reproduced here with the order of magnitudes under-set each
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term.

cgH

p--_-+#
[i*l/1] [1] [e*l/tz]

Op OQ [ucfbo_y,_= -g7+-g-+o
[1/1] [1/1] L [1,01

1

+ -_ I\hn) <}r/
[1] IJ./s] L [i] [1/s]

[11 [1]

4-

4-

[i] ]_" k_-
[Wa]

?--fi
[11 [1] i [l/s]

+ u;-_-

[1) [1.1/1]

+ %fbo_y,,7+u;fbody,¢
b*0] [1,0]

k _--_+ua ve_ + u_'c¢,7 + u;'c_;

[1/1] [1.1] [e,(1/e)] [1.1] J

+ u¢_:¢_ +u,%_ + u¢1:,¢
[1,(1/s)] [_*11 [1*(I/e)]

[11 [1/1] [l*l] [8,(1/_)]

-1

+u¢,c¢¢+ u,7"%+,,¢'c¢_/
[1.1] [e*(1/_)] [1.1] J

+ u¢_¢,7 +u_'%n + ucv,7¢
[1,(1/e)] [1,q [_*(We)]

(163)

+ L)k°--r + +
[1,1] [_,(l/_)] [1,1]

For the shear stress and thermal conductivity terms, terms below order 6' (1/ea),can be

ignored, while for the rest of the terms, terms below order 6' (1) can be eliminated. Notice

that the 1"_rl and _:(r_ terms are the only remaining shear stress terms, and recall that the only

@(1/_) terms in these shear stress terms are the 0/0r/ terms. Thus the energy equation
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for thecurvilinearcoordinatesystembecomes

p--fff + p u¢--_ + u,T ff-_ + u_-_[

,gp OQ (___)a__I(1)kC3T1 (164)= a--7+_ +...,,.-., L.--,,- _]
8 Ou_ Ou_l+ [, +,

rr_lu proceed, th,_.._ranchlctivitvv...... . term is converted to terms of the stagnation enthalpy and

velocities to get (after an order of magnitude analysis eliminates the un term)

= ff-_- ---u[ (165)

Also, the shear stress components can be manipulated to get the following if the viscosity

gradient is assumed to be 6 (e)

9u_ 8u_]

Combining these two results with the curvilinear energy equation formulation results in

p_+_, u_-+ .,_-- + ,,_

_tt OQ (167)= "+ Ot

# OH + 1 f Ou_ Ou_
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which,whenincorporatingthegeodesiccoordinatesystemsimplifications,becomes

Two-Dimensional Formulation

(168)

The development ut" "-u,_......_,,,,u-u,.,,...o.v.,.:a:.... i,.,,.:,l fo_rm.u!ations of the boundary, layer equations

follows the same path as the three-dimensional formulation, with the removal of the third

coordinate direction.

Continuity The boundary layer continuity equation in the general curvilinear coordinate

Op (____),9(pu_) (____)O(purT)+K_npu_=O (169)o-7+ o_ + an

system becomes

In the geodesic coordinate system this becomes

(170)

Momentum

dinate system becomes

Ou_

p--gi- + p

The boundary layer _-momentum equation in the general curvilinear coor-

(171)
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In thegeodesiccoordinatesystemthisbecomes

(172)

The boundarylayer r/-momentumequationin the generalcurvilinearcoordinatesystem

 =o%4

becomes

In the geodesic coordinate system this becomes

(173)

Op

-_ = PKrt_U _ (174)

Energy

becomes

The boundary layer energy equation in the general curvilinear coordinate system

o.p--_-+ p u_-_ + Urt-ff_

Op 8Q
- -Jr

at at

In the geodesic coordinate system this becomes

p--o-[ + p u¢-ff_+ uo--_

Op OQ + (9 [#all
= °t+N- _ L_--+_on

(175)

(176)

Euler Equations in Geodesic Coordinates

This section will develop the Euler equations from the vector of the Navier-Stokes

equations from above applying the requisite assumptions. First the general curvilinear
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coordinatesystemform will be presented,followedby the geodesiccoordinatesystem

form.

Assumptions

The primary differences between the Navier-Stokes and the Euler equations are the as-

sumptions of an inviscid and adiabatic flow. The first results in the viscosity, #, to approach

zero, and the second results in the thermal conductivity, k, to approach zero and no heat

production caused by external processes, aQ/Ot _ o.

Three-Dimensional Formulation

The three-dimensional formulations of the Euler equations follow a similar develop-

ment as the Navier-Stokes equations developed above. The major difference is the added

simplifications that can be made with respect to the inviscid and adiabatic assumptions.

First, the general curvilinear coordinate system formulation will be presented, then the

geodesic coordinate system formulation will be presented for each conservation equation

set.

Continuity

get

ap

at

The continuity equation uses (107) and the divergence operator equation to

o o +
--+ ,9_ + _---0--- a; (177)
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In thegeodesiccoordinatesystemthisbecomes

a--7+ a_ + a_ + a_

+

(178)

Momentum The momentum equations use (108), as well as the momentum convection

to obtain the _-, r/- and _-momentum equations. Notice that the stress tensor divergence is

not needed since it only contains viscous terms. The _-momentum equation becomes

The r/-momentum equation becomes

0url o.+

Op

The _-momentum equation becomes

K 2

= Pfbody,_ --

(179)

(180)

(181)
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Applyingthegeodesiccoordinatesystemsimplificationsyieldsfor the_-momentumequa-

P-_-+P _ "¢-#T+""-_ + .¢o¢]

+p +K.u u -

tion

with the 71-momentum equation becoming

Op

and the if-momentum equation becoming

= [3fbody,_ -- "_

(182)

(183)

(184)

Energy The energy equation uses (1 10) and the curvilinear vector operations, notice that

the stress tensor energy dissipation as well as the heat production and conduction terms

disappear due to the assumptions of inviscid and adiabatic, to become

p --_-- + p u¢-_+ u n -ff_ + u g -_ (185)

Op OQ +
= _ +-g-i- O [U¢4o_y,_+ u,_fboey,,7+U_4ody,_l
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Applyingthegeodesiccoordinatesystemconditions,thisbecomes

o3H 1 aH aH u_-_-_-

o3p aQ
= "-'_'i-'-'_''}-p [U_fbod.,: "q-Izrlfbody,. --]-U:fbody,: ]

Two-Dimensional Formulation

(186)

The two-dimensional formuiations of the Euler equations follow a simi!mr development

as the Navier-Stokes equations developed above. The major difference is the added sim-

plifications that can be made with respect to the inviscid and adiabatic assumptions. First,

the general curvilinear coordinate system formulation will be presented, then the geodesic

coordinate system formulation will be presented for each conservation equation set.

Continuity The continuity equation uses (107) and the divergence operator equation to

a--7+ a_ + 077 +Ko pu,7=0 (187)

get

In the geodesic coordinate system this becomes

(188)

Momentum The momentum equations use (108), as well as the momentum convection

to obtain the _- and 7"l-momentum equations. Notice that the stress tensor divergence is not
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neededsinceit onlycontainsviscousterms.The_-momentumequationbecomes

0p=0Sbody,_- 97

The 77-momentum equation becomes

-- Pfbody, rl - -'_

(189)

(190)

Applying the geodesic coordinate system simplifications yields for the _-momentum equa-

tion

o-gi-+o ,,_-g-(_+u_-g-_+K,_u¢u_=Ogod_,_- _ (191)

and the ri-momentum equation becoming

p--_--+pOUn [(_)u¢--_T _Ou_+un-_-K_¢u_]=pfbody,r 7 - (h-_) c_p_ (192,

Energy The energy equation uses (110) and the curvilinear vector operations, notice that

the stress tensor energy dissipation as well as the heat production and conduction terms

disappear due to the assumptions of inviscid and adiabatic, to become

<)0,1p --_- + p u { -_ + u_l -_ (193)

Op aO [ ]= c_--'7+ --_ + p u{ fbody,_ -t- UrTfboey, rl
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Applyingthegeodesiccoordinatesystemconditions,thisbecomes

OH [(____)0H OH] OpOQ [u_fbody,_+urlfbody, rll

(194)
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APPENDIX B

THREE POINT ARC FORMULATION

"I"'1m_......,_v_,,_.,.,,._;,. no,,,_l,_n_,_._ ......_ e.la_ed form solution for the equation described by three points

in _,2.

Given three non-collinear points, {Xa,Xb,Xc}, in _2 then they form a circle of radius R

with the center of the circle at x 0. Thus, each point solves the following equation

(X-Xo)2 + (y-yo)2.-=R 2 (195)

Substituting the three points into (195) and multiplying out the squared terms yields

ra [Xa2 + y2

i

x b

Ya 1

Yb 1

2x o

2yo = I_+Y2 (196)

I
2 2

Xc Yc 1 R2-_-yg ]xc+Y_

Since (196) is a simple linear algebra equation, Kramer's rule (see for example [10] for
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more information on Kramer's rule) can be used to solve (196) and get

X0 =

YO "=

X_a+ Y2 Ya 1

4+Y_, Yb 1

_+Yac Yc 1

IXaYa:l
2 xh Yb

Xc Yc 1

Xa _+y2a 1

xb _+y_ 1

Xc _+y2c 1

Xa Ya 1

2 Xb Yb 1

Xc Yc 1

(197a)

(197b)

R2 _ _ - y 2 =

Xa

x b

Xc

Ya _+Y2a

Yb _+Y_

Yc _+y2c

Ya 1

Yb 1

Yc 1

Xa

x b

Xc

The location of the center of the circle is given by (197a) and (197b).

(197c)

In order to find the
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radiusof thecircle, (197a)and(197b)aresubstitutedinto (197c)to get

R 2 ._

_+Y_ Ya

_+Y'_ Yb

_+Y2c Yc

I
1 ]Xa

I

1-t-_b c1

_+y2 a 1

_+y_ 1

1

Xa

+4 Xb

Xc

Ya 1

Yb 1

Yc 1

Xa Ya

Xb Yb

xc Yc

+ y2a

4 +Y_

(198)

l!i Ya 1

4 Yb 1

Yc 1

When (198) is multiplied out and simplified, it becomes

R2= [(Xa--xb) 2+ (Ya-'Yb) 21 [(Xa--Xc) 2 +(ya--Yc) 2] [(Xc--Xb) 2 + (Yc--Yb) 2]
(199)

4 [Xc (Ya--Yb) + Xb (Yc--Ya)+ Xa (yb--yc)] 2

R can now be found by taking the square root of (199) to get

R=-t- _/[(Xa--Xb)2 +(Ya--Yb)'] [(Xa--Xc)2+(Ya--Yc) 2] [(Xc--Xb)Z+(Yc--Yb) 2]

2 [Xc (Ya-- Yb) + Xb (Yc-- Ya)+ Xa (Yb--Yc)]

Finding x o and Yo requires expanding the determinates in (197a) and (197b) to get

(200)

(X2c+ Y2c) (Ya-Yb) + (_ + Y_) (Yc- Ya)+ (_ + y2) (Yb- Yc)

X0= 2[Xc(Ya_Yb)+Xb(Yc_Ya)+Xa(Yb_yc) ] (201a)

(_ + y2c) (Xa- Xb) + (x} + y2) (Xc- Xa) + (X2 + y2a) (Xb --Xc)

2 [Xc (ya--Yb) +X b (Yc--Ya)+Xa (Yb--Yc)]
No =
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APPENDIX C

NACA 4-DIGIT AIRFOIL CURVATURE

This appendix develops the cun, ature equation for the NACA 4-digit airfoil for both the

cambered and symmetric airfoils. First, the equations describing the airfoil surface is pre-

sented. This is followed by the development of the equations required in the curvature

calculation for the general cambered airfoil. Finally, the relatively simpler curvature equa-

tion is developed for the non-cambered (i.e. symmetric) 4-digit airfoil.

Airfoil Description

The standard equation for the NACA 4-digit-series airfoil is represented by a four-digit

number, qnxx, where q and n represent the camber specification and xx represents the

thickness-chord ratio, tc = xx/100. The standard equation for the airfoil can be obtained

from several references such as [1] and is defined by starting with symmetric airfoil repre-

sentation

tc
Ys -- 0.20 (a0v_ + a12 + a27_ + a3y3 + a4x-4) (202)
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andthedescriptionof thecamberlineas

q
P=I-_

n

q = -i-0

yc= l _ (2px-x2)

/ [(1- 2p)+2px-x
k (l-p)

ifx < p;

ifx > p.

(203)

Next, the airfoil surface coordinates can be represented by a combination of the symmetric

airfoil equation (202) and the camber line equation (203) as the following set of equations

Yc
tan 0 = --

X

(
x - Ys sin 0,2

/
(X+ys sin 0,

(

Y = _Yc

+ yscosO,

Yc - Ys cos 0,

upper surface;

lower surface.

upper surface;

lower surface.

(204)

where 2 and y are the non-dimensionalized airfoil coordinates. The a coefficients in the

symmetric airfoil equation are defined by the following boundary conditions for a thickness

ratio 0.20 symmetric airfoil, NACA-0020:

1. Maximum Ordinate - The maximum ordinate occurs at £ = 0.30 and is y = 0.10

2. Trailing Edge Ordinate - The trailing edge ordinate is y = 0.002 at 2 = 1.0

3. Trailing Edge Slope - The trailing edge slope is Idy/d£1 = 0.234
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4. NoseShape - The shape of the nose is defined as _ --- 0.1 and 37= 0.078

Applying these constraints, the coefficients are

a 0 = 0.2969

a 3 = 0.2843

a2 = -0.3516 (205)

Cambered Airfoil Curvature

To start developing the cambered airfoil curvature equation, the standard definition of the

radius of curvature, see [74], is presented here

-I
_- I_z=¢ (206)

where K is the curvature and R is the radius of curvature. To find the first and second

derivatives of the airfoil curve that are required in the curvature equation, it is convenient

to use the chain rule to obtain the following relations

dy dy/&

d2y (d2y/dx 2) (dY./dx)- (d2._/dx 2) (dy/dx)

d._2 (dX/dx) 3

Combining equations (207) and (206) yields the following

K(_)-I =
[(d._/dx) 2 + (dy/dx)2] 3/2

(d2y/dx 2) (dY/dx) - (d2.f/dx 2) (dy/dx)

(207)

(208)
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Now the curvatureequationis in termsof the independentcoordinatex.

tions (204) to develop the derivatives needed for equation (208) yields

Using equa-

dxd-_Y=l::]z[dyssinO+ys_x c°sO ][dx

dx---g= _ [ dx2 sin0 -_x -_x C°S O + y'-d_x2 c°s O - ys -_x

F
dx - dx 4- [. dx cos 0 ax .1

dZY dSYe -t- [ d2ys cos 2dysd0 dsO . {d0"]2 ]

dx---5= dx----_ L--_xZ " o--_x-_xsinO-ys--_x2smO-ys\--_xj cosO J

(209)

where the upper sign in + and N refers to the upper surface and the lower sign refers

to the lower surface. Applying these to the numerator and denominator of the curvature

equation (208) yields

where

and

x(_)-I = u
D

(dyc_ 2 (dYs_ 2 {dO_ 2
N= l + k dx / + \-_x J + Y_ k--_xJ

rdy (+c ) do( )]4-2 [ dx \ dx cosO-sinO - ys--_x sinO+cosO

d2yc (dys_ 2 dO dysd20 d2ysdO
O = -a-_S+2 \ _ J -_x + ys-_x dx 2 YS dx 2 dx

{[d2ys (dO)21 dycsinO )+ [-_x_-y_\_/J c°s°+-a-;x

+(2_ d0 d20"_( dyc )+Ys-_-_x2) cos 0 - sin 0dx kdx

d2yc(_xsinO+ys_xC°SO)}dx2

(210)
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Usingthedefinitionof 0, the following derivatives can be found

dO

dx

d20

d__ _ sin 0 cos 0
COS2 '_ dx

(211)
X

(a-_x-aYc_ ( d° a-Y-s-X (sin2 0 0) d°cos 2 0 k dx_ ax ] + cos 0 sin 0 1 -- 2-3_ dx x) + - cos 2 _-_x

dx 2 - x2

Finally, the first and second derivatives of the symmetric airfoil equation is

dys

dx

d2ys

dx 2

tc { ao + , ,_ _. )-- 0.20 _ al-r"_'2"_+3a3_-k-' 4aj3

_ ao 12a42.2)tc (_/_ff + 2a 2 + 6a32 +0.20

(212)

and for the camber line equation

2m
dyc 7 (p - x) if x < p;

=
[ 2m-(_-_ (p- x) if x >__p.

(213)

d2yc {-_-_ ifx < p;
= -  i-:V -P2m if x >

Combining equations (202), (203), (211), (212) and (213) with equation (210) yields the

curvature equation for the NACA 4-digit airfoil.

Symmetric Airfoil Curvature

Developing the symmetric airfoil curvature starts with simplifying the general curvature

equations developed above for the case where Yc = 0. The following is equations (202), (203),
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(211), (212) and (213) with the symmetric limitation applied

dx

d2ys

dx 2

tc (aov@ +alY +a222_l_a3)23 +a4x-4)
Ys = 0.2-----0

dys tc (a___ )-- 0.20 +al +2a2x+3a37r2+4a4x3

--0.20tc(-_/2-t-2a2+6a3$-k-12a42-2)

dyc dZyc - 0
Yc = _ -- dx 2

no d20
O--

dx dx e
=0

(214)

Also, notice that $ and 29simply become x and Ys, respectively. Applying these simplified

equations to the curvature equation (210) yields

i ys 2]3/2
K(_)_I= 1+\-d-7- / J

+_x* (215)

which is just the curvature equation for the symmetric airfoil with the 4- signifying the

upper or lower surface. This can be simplified further by substituting the equations for the

Ys terms to get

(-_.-.-._)214(O't--_-)2y+(ao+2alV'_+,4a213/2+6a3x5/2+8a417/2)213/2

K (x) -1 = 2 (-a o + 8a2 x3/2 + 24a3x5/2 -+-48a4x7/2 )

(216)
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APPENDIX D

NUMERICAL CONSERVATION

This appendix uc,_u,_,,L,_o-'........ "_ th'_ oc_neorvntinn_v............ properties of the numerical scheme with and

without the solid surface treatment.

Since the original NASCART-GT solver is based on a finite volume scheme solving the

Euler and Navier-Stokes equations in conservation form, it is a conservative scheme (see

Chapter II for details). The solid boundary treatment discussed in Chapter HI removes the

surface cells from the finite volume scheme, and there is no assurance that the surface cell

treatment remains conservative. Therefore, the use of the solid boundary treatment makes

the overall scheme non-conservative.

In order to address how much impact the non-conservative solid boundary treatment

has on the overall conservation of the scheme, the incompressible, inviscid cylinder case

discussed on page 105 was used to determine this impact. To determine the degree to which

this scheme is non-conservative, a control volume is place around the entire computational

domain, and the net flux through the control volume is calculated. Figure 90 shows a

schematic of the control used to calculate the net fluxes of the conserved quantities.

A complete finite volume solution to this case, i.e. using the finite volume formulation

for the surface cells instead of the solid boundary treatment, is used establish the numerical
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Figure 90: Incompressible Cylinder Control Volume

conservation properties of this scheme. While the net flux should be zero for this case,

numerical errors will cause it to be non-zero. Table 15 shows the results for this. The mass

net flux is about 0.6% of the flux into the control volume and the energy net flux is about

0.3%. The same net flux calculation for the curved wall boundary condition solution is

also shown in table 15. The mass net flux for this case is again about 0.6% and the energy

net flux is about 0.3%. Also, there is virtually no difference between the 0.2% relative

difference between the net mass fluxes and 0.2% relative difference for the net energy flux.

Table 15: Net Fluxes for Incompressible Cylinder

Finite-Volume Curved Wall

Fin [;'net [;'net

mass 0.132954 7.87867E-04 7.85989E-04

energy 47.6208 0.148208 0.147871
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While thesolidboundarytreatmentmakesthisschemeformally non-conservative,the

net flux differencesbetweentheconservativefinitevolumeschemeandthesolidboundary

treatmentarenegligible.

219



Bibliography

[1] I. H. Abbott and A. E. von Doenhoff. Theory of Wing Sections. Dover Publications,

Inc., New York, 1959.

[21

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

M. J. Aftosmis. Solution Adaptive Cartesian Grid Methods for Aerodynamic Flows

with Complex Geometries. In Lecture Notes for 28th Computational Fluid Dynam-

ics Lecture Series. yon Karman Institute for Fluid Dynamics, Rhode-Saint-Genbse,

Belgium, March ' """1_/.

M. J. Aftosmis, M. J. Berger, and G. Adomavicius. A Parallel Cartesian Approach

for External Aerodynamics of Vehicles with Complex Geometry. In Thermal and

Fluids Analysis Workshop, September 1999.

M. J. Aftosmis, M. J. Berger, and G. Adomavicius. A Parallel Multilevel Method for

Adaptively Refined Cartesian Grids with Embedded Boundaries. In 38th Aerospace

Sciences Meeting and Exhibit, Reno, NV, January 2000. AIAA. AIAA-2000-0808.

M. J. Aftosmis, D. Gaitonde, and T. S. Tavares. Behavior of Linear Reconstruction

Techniques on Unstructured Meshes. AIAA Journal, 33(11):2038-2049, November

1995.

A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A Conser-

vative Adaptive Projection Method for the Variable Density Incompressible Navier-

Stokes Equations. Journal of Computational Physics, 142(1): 1-46, 1998.

D. A. Anderson, J. C. Tannehill, and R. H. Pletcher. Computational Fluid Mechanics

and Heat Transfer. Series in Computational Methods in Mechanics and Thermal

Sciences. Hemisphere Pub. Corp., McGraw-Hill, New York, 2nd edition, 1984.

J. D. Anderson, Jr. Modern Compressible Flow with Historical Perspective.

McGraw-Hill, Inc., New York, 2nd edition, 1990.

W. K. Anderson, J. L. Thomas, and B. van Leer. A Comparison of Finite Volume

Flux Vector Splitting for the Euler Equations. In AIAA 23st Aerospace Sciences

Meeting, Reno, NV, January 1985. AIAA-85-0122.

H. Anton and C. Rorres. Elementary Linear Algebra, Applications Version. John

Wiley & Sons, Inc., New York, 6th edition, 1991.

R Arminjon and A. Madrane. Staggered Mixed Finite Volume/Finite Element

Method for the Navier-Stokes Equations. AIAA Journal, 37(12):1558-1571, De-

cember 1999.

220



[12] N. Ashgriz and J.Y.Poo. FLAIR: Flux Line-segmentModel for Advection and
InterfaceReconstruction.Journal of Computational Physics, 92(2):449-468, 1991.

[13] E. Atta. Component-Adaptive Grid Interfacing. In 19th Aerospace Sciences Meeting,

St. Louis, MO, January 1981. AIAA-81-0382.

[14] E. H. Atta and J. Vadyak. A Grid Interfacing Zonal Algorithm for Three Dimen-

sional Transonic Flows About Aircraft Configurations. In AIAA/ASME 3rd Joint

Thermophysics, Fluids, Plasma and Heat Transfer Conference, St. Louis, MO, June

1982. AIAA-82-1017.

[15] E. H. Atta and J. Vadyak. Numerical Simulation of the Transonic Flowfield for
_'xr;.,,-,/Nl_o_ll_ Oc_nfi _nrntinn_ In A IAA/AHS/ASEE Aircraft Design Systems and Op-

erations Meeting, San Diego, CA, October 1984. AIAA-84-2430.

[16] B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for

Separated Turbulent Flows. In AIAA 16th Aerospace Science Meeting, Huntsville,

AL, January 1978. AIAA-78-257.

[17] T. J. Barth and S. W. Linton. An Unstructured Mesh Newton Solver for Compress-

ible Fluid Flow and Its Parallel Implementation. In 33rdAerospace Sciences Meeting

and Exhibit, Reno, NV, January 1995. AIAA. AIAA-95-0221.

[18] J. T. Batina. A Gridless Euler/Navier-Stokes Solution Algorithm for Complex-

Aircraft Applications. In AIAA 31th Aerospace Sciences Meeting, Reno, NV, January

1993. AIAA,93-0333.

[19] S. A. Bayyuk, K. G. Powell, and B. van Leer. A Simulation Technique for 2-D Un-

steady Inviscid Flows Around Arbitrarily Moving and Deforming Bodies of Arbi-

trary Geometry. In 11th AIAA Computational Fluid Dynamics Conference, Orlando,

FL, July 1993. AIAA-93-3391-CP.

[20] T. Belytschko, Y. Y. Lu, and L. Gu. Element-Free Galerkin Methods. International

Journal for Numerical Methods in Engineering, 37(2):229-256, January 1994.

[21] J. A. Benek, P. G. Buning, and J. L. Steger. A 3-D Chimera Grid Embedding Tech-

nique. In 7th Computational Fluid Dynamics Conference, Cincinnati, OH, July

1985. AIAA. AIAA-85-1523.

[22] M. J. Berger, M. J. Aftosmis, and G. Adomavicius. Parallel Multigrid on Cartesian

Meshes with Complex Geometry. In 8th International Conference on Parallel CFD,

Trondheim, Norway, 2000.

[23] M. J. Berger and R. J. LeVeque. An Adaptive Cartesian Mesh Algorithm for the Eu-

ler Equations in Arbitrary Geometries. In 9th AIAA Computational Fluid Dynamics

Conference, Buffalo, NY, June 1989. AIAA-89-1930-CP.

221



[241

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. J.BergerandJ.Oliger. AdaptiveMeshRefinementfor HyperbolicPartialDif-
ferentialEquations.Journal of ComputationaI Physics, 53(1):484--512, 1984.

J. J. Berten and M. L. Smith. Aerodynamics for Engineers. Prentice Hall, Inc.,

Englewood Cliffs, NJ, 1989.

W. L. Briggs. A Multigrid Tutorial. Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1987.

M. O. Bristeau, R. Glowinski, J. Periaux, and H. Viviand. Presentation of Problems

and Discussion of Results. In M. O. Bristeau, R. Glowinski, J. Periaux, and H. Vi-

viand, editors, Numerical Simulations of Compressible Navier-Stokes Flows, Notes

on Numerical Fluid Mechanics, pages 1-40. Friedr. Vieweg & Sohn, 1987.

L. Cambier. Computation of Viscous Transonic Flows Using an Unsteady Type

Method and a Zonal Grid Refinement Technique. In M. O. Bristeau, R. Glowinski,

J. Periaux, and H. Viviand, editors, Numerical Simulations of Compressible Navier-

Stokes Flows, Notes on Numerical Fluid Mechanics, pages 105-122. Friedr. Vieweg

& Sohn, 1987.

J. E. Carter. Numerical Solutions of the Navier-Stokes Equations for the Supersonic

Laminar Flow Over a Two-Dimensional Compression Comer. NASA Technical Re-

port NASA-TR-R-385, NASA Langley Research Center, Hampton, VA, July 1972.

J. E. Carter. A New Boundary-Layer Interaction Technique for Separated Flows.

NASA TM-78690, June 1978.

J. E. Carter. A New Boundary-Layer Inviscid Interaction Technique for Separated

Flow. In 4th AIAA Computational Fluid Dynamics Conference, Williamsburg, VA,

July 1979. AIAA-79-1450.

E Casalini and A. Dadone. Computations of Viscous Flows Using a Multigrid Finite

Volume Lamda Formulation. Engineering Computations, 16(7):767-786, 1999.

T. Cebeci, R. W. Clark, K. C. Chang, N. D. Halsey, and K. Lee. Airfoils with

Separation and the Resulting Wakes. Journal of Fluid Mechanics, 163:323-347,

February 1986.

L. T. Chen and M. N. Bui. An Interactive Scheme for Transonic Wing/Body Flows

Based on Euler and Inverse Boundary-Layer Equations. In AIAA 21st Fluid Dynam-

ics, Plasma Dynamics and Lasers Conference, Seattle, WA, June 1990. AIAA-90-

1586.

Y.-L. Chiang, B. van Leer, and K. G. Powell. Simulation of Unsteady Inviscid Flow

on an Adaptively Refined Cartesian Grid. In 30th Aerospace Sciences Meeting &

Exhibit, Reno, NV, January 1992. AIAA. AIAA-92-0443.

222



[36] D. K. Clarke,M. D. Salas,andH. A. Hassan.EulerCalculationsfor Multielement
Airfoils UsingCartesianGrids.AIAA Journal, 24(3):353-358, March 1986.

[37] E. Cohen. Some Mathematical Tools for a Modeler's Workbench. IEEE Computer

Graphics and Applications, 3(7):63-66, October 1983.

[38] W. J. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler

and Navier-Stokes Equations. PhD thesis, University of Michigan, Ann Arbor, MI,

1993.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

W. J. Coirier. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Eu-

ler and Navier-Stokes Equations. NASA Technical Memorandum 106754, NASA

Lcwis Research Center, C!eve!Kn_d, OH, October 1994.

W. J. Coirier and K. G. Powell. A Cartesian, Cell-Based Approach for Adaptively-

Refined Solutions of the Euler and Navier-Stokes Equations. In 33rd Aerospace

Sciences Meeting & Exhibit, Reno, NV, January 1995. AIAA. AIAA-95-0556.

W. J. Coirier and K. G. Powell. Solution-Adaptive Cartesian Cell Approach for

Viscous and Inviscid Flows. AIAA Journal, 34(5):938-945, May 1996.

R Colella, R. Ferguson, and H. Glaz. Multifluid Algorithms for Eulerian Finite

Difference Methods. Preprint, 1996.

Cray Research, Inc., Eagan, MN. CRAY T3D System Architecture Overview, March

1994. HR-04033.

A. Dadone and B. Grossman. Surface Boundary Conditions for the Numerical So-

lution of the Euler Equations. AIAA Journal, 32(2):285-293, February 1994.

D. De Zeeuw and K. G. Powell. An Adaptively-Refined Cartesian Mesh Solver

for the Euler Equations. In lOth AIAA Computational Fluid Dynamics Conference,

Honolulu, HI, June 1991. AIAA-91-1542-CP.

D. L. De Zeeuw. A Quadtree-Based Adaptively-Refined Cartesian-Grid Algorithm

For Solution Of The Euler Equations. PhD thesis, University of Michigan, Ann

Arbor, MI, 1993.

N. H. Decker, V. K. Naik, and M. Nicoules. Parallelization of Implicit Finite Dif-

ference Schemes in Computational Fluid Dynamics. ICASE Report 90-53, ICASE,

Hampton, VA, August 1990. NASA/CR- 182081.

E Deister and E. H. Hirschel. Self-Organizing Hybrid Cartesian Grid/Solution Sys-

tem with Multigrid. In 40th Aerospace Sciences Meeting and Exhibit, Reno, NV,

January 2002. AIAA. AIAA-2002-0112.

223



[49]

[50]

[51]

r(ol
[ax_J

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

M. Delanaye, M. J. Aftosmis, M. J. Berger, Y. Liu, and T. H. Pulliam. Automatic

Hybrid-Cartesian Grid Generation for High-Reynolds Number Flows around Com-

plex Geometries. In AIAA 37th Aerospace Sciences Meeting & Exhibit, Reno, NV,

January 1999. AIAA-99-0777.

H. G. Dietz and T. I. Mattox. KLAT2's Flat Neighborhood Network. In 4th Annual

Linux Showcase & Conference, pages 91-100, Atlanta, GA, October 2000.

W. Dietz, M. Fan, J. Steinhoff, and Y. Wenren. Application of Vorticity Confinement

to the Predicition of the Flow Over Complex Bodies. In AIAA 15th CFD Conference,

Anaheim, CA, June 2001. AIAA. AIAA-2001-2642.

N. D. Dome! and S. !J. Karman, Jr. Splitfow: Progress in 3D CFD with Cartesian

Omni-tree Grids for Complex Geometries. In AIAA 38th Aerospace Sciences Meet-

ing & Exhibit, Reno, NV, January 2000. AIAA-2000-1006.

M. Drela and M. B. Giles. Viscous-Inviscid Analysis of Transonic and Low

Reynolds Number Airfoils. AIAA Journal, 25(10): 1347-1354, October 1987.

T. M. Eidson and G. Erlebacher. Implementation of a Fully-Balanced Periodic Tridi-

agonal Solver on a Parallel Distributed Memory Architecture. ICASE Report 94-37,

ICASE, Hampton, VA, May 1994. NASA/CR-194919.

B. Epstein, A. L. Luntz, and A. Nachshon. Multigrid Transonic Computations About

Arbitrary Aircraft Configurations. Journal of Aircraft, 26(8):751-759, August 1989.

B. Epstein, A. L. Luntz, and A. Nachshon. Cartesian Euler Method for Arbitrary

Aircraft Configurations. AIAA Journal, 30(3):679-687, March 1992.

E. A Fadlun, R. Verzicco, R Orlandi, and J. Mohd-Yusof. Combined Immersed-

Boundary Finite-Difference Methods for Three-Dimensional Complex. Journal of

Computational Physics, 161 (1):35-60, 2000.

M. Fan, W. Dietz, Y. Wenren, and J. Steinhoff. Computing Complex Flows on

Coarse Grids Using Vorticity Confinement. In 40th AIAA Aerospace Sciences Meet-

ing and Exhibit, Reno, NV, January 2002. AIAA. AIAA-2002-0135.

E D. Frymier, Jr., H. A. Hassan, and M. D. Salas. Navier-Stokes Calculations Using

Cartesian Grids: I. Laminar Flows. AIAA Journal, 26(10): 1181-1188, October 1988.

R. L. Gaffney, H. A. Hassan, and M. D. Salas. Euler Calculations for Wings Using

Cartesian Grids. In AIAA 25th Aerospace Sciences Meeting, Reno, NV, January
1987. AIAA-87-0356.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM

3 User's Guide and Reference Manual. Oak Ridge National Labs, Oak Ridge, TN,

September 1994. ORNL/TM- 12187.

224



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

S. K. Godunov. A Finite Difference Method for the Computation of Discontinuous

Solutions of the Equations of Fluid Dynamics. Matematicheskii sbornik, 47:357-

393, 1959.

S. K. Godunov. Reminiscences about Difference Schemes. Journal of Computa-

tionalPhysics, 153(1):6-25, 1999.

D. Goldstein, R. Handler, and L. Sirovich. Modeling a No-Slip Flow Boundary with

an External Force Field. Journal of Computational Physics, 105 (2):354-366, 1993.

W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Im-

plementation of the MPI Message Passing Interface Standard. Parallel Computing,

22(6):789-828, September 1996.

D. Heller. A Survey of Parallel Algorithms in Numerical Linear Algebra. SIAM

Review, 20(4):740-777, October 1978.

L. E Henderson, R Colella, and E. G. Pucket. On the Refraction of Shock Waves at

a Slow-Fast Gas Interface. Journal of Fluid Mechanics, 224:1-27, March 1991.

G. Hipper and D. Tavangarian. Advanced Workstation Cluster Architectures for

Parallel Computing. Journal of System Architecture, 44:207-226, 1998.

E. H. Hirschel and W. Kordulla. Shear Flow in Surface-Oriented Coordinate. Friedr.

Vieweg & Sohn, Braunschweig, Germany, 1981.

C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) Method for Dynamics of Free

Boundaries. Journal of Computational Physics, 39(1):201-221, 1981.

D. G. Holmes and S. D. Connell. Solution of the 2D Navier-Stokes Equations on Un-

structured Adaptive Grids. In 9th AIAA Computational Fluid Dyamics Conference,

Buffalo, NY, June 1989. AIAA-89-1932-CE

L. Howarth. The Boundary Layer in Three Dimensional Flow. - Part I. Derivation of

the Equations for Flow along a General Curved Surface. Philosophical Magazine,

42:239-243, March 1951. No. 326.

G. Hu, B. Grossman, and J. Steinhoff. A Numerical Method for Vortex Confine-

ment in Compressible Flow. In AIAA 38th Aerospace Sciences Meeting, Reno, NV,

January 2000. AIAA-2000-0281.

J. E Hurley. Calculus. Wadsworth Publishing, Belmont, CA, 1987.

A. Jameson. Solution of the Euler Equations for Two Dimensional Transonic Flow

by a Multigrid Method. Applied Mathematics and Computation, 13(3-4):327-356,

November 1983.

225



[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

D. C. Jespersen. Parallelism and OVERFLOW. NAS Technical Report NAS-98-013,

NASA Ames Research Center, Moffett Field, CA, October 1998.

Y. Kallinderis and S. Ward. Prismatic Grid Generation with an Efficient Algebraic

Method for Aircraft Configurations. In lOth Applied Aerodynamics Conference, Palo

Alto, CA, June 1992. AIAA-92-2721-CR

K.-H. Kao, M.-S. Liou, and C.-Y. Chow. Grid Adaption Using Chimera Composite

Overlapping Meshes. In llth AIAA Computational Fluid Dynamics Conference,

Orlando, FL, July 1993. AIAA-93-3389-CE

S. L. Karman, Jr. SPLITFLOW: A 3D Unstructured Cartesian/Prismatic Grid CFD

Code far Complex Geometries. In 33rd Aerospace Sciences Meeting and Exhibit,

Reno, NV, January 1995. AIAA. AIAA-95-0343.

D. S. Katz, T. Cwik, B. H. Kwan, J. Z. Lou, R L. Springer, T. L. Sterling, and

E Wang. An Assessment of a Beowulf System for a Wide Class of Analysis and

Design Software. Advances in Engineering Software, 29(3-6):451-561, 1998.

K. Kaups and T. Cebeci. Compressible Laminar Boundary Layers with Suction on

Swept and Tapered Wings. Journal of Aircraft, 14(7):661-667, July 1977.

J. KIm, K. Kim, and H. Choi. An Immersed-Boundary Finite-Volume Method for

Simulations of Flow in Complex Geometries. Journal of Computational Physics,

171(1):132-150, 2001.

M. Kremenetsky, T. Tysinger, and S. Posey. Considerations for Parallel CFD En-

hancements on SGI ccNUMA and Cluster Architectures. In lOth Copper Mountain

Conference on Multigrid Methods, Copper Mountain, CO, April 2001.

K. A. Kurbatskii and C. K. W. Tam. Cartesian Boundary Treatment of Curved Walls

for High-Order Computational Aeroacoustics Schemes. AIAA Journal, 35(1): 133-

140, January 1997.

C. L. Ladson, C. W. Brooks, Jr., A. S. Hill, and D. W. Sproles. Computer Program To

Obtain Ordinates for NACA Airfoils. NASA Technical Memorandum 4741, NASA

Langley Research Center, Hampton, VA, December 1996.

R R. Lahur and Y. Nakamura. Simulation of Flow Around Moving 3D Body on

Unstructured Cartesian Body. In 15th AIAA Computational Fluid Dynamics Confer-

ence, Anaheim, CA, June 2001. AIAA-2001-2605.

M.-C. Lai and C. S. Peskin. An Immersed Boundary Method with Formal Second-

Order Accuracy and Reduced Numerical Viscosity. Journal of Computational

Physics, 160(12) :705-719, 2000.

226



[88]

[89]

[90]

[91]

[92]

[931

[94]

[95]

[96]

[97]

[98]

[99]

M. Lesionne and C. Farhat. Geometric Conservation Laws for Flow Problems with

Moving Boundaries and Deformable Meshes, and Their Impact on Aeroelastic Com-

putations. Computer Methods in Applied Mechanics and Engineering, 134:71-90,

1996.

R. J. LeVeque. A Large Time Step Generalization of Godunov's Method for Systems

of Conservation Laws. SlAM Journal on Numerical Analysis, 22(5):1051-1073,

December 1985.

L. Lijewski and N. Suhs. Chimera-Eagle Store Separation. In AIAA Atmospheric

Flight Mechanics Conference, Hilton Head, SC, August 1992. AIAA-94-1925-CP.

J.-L. Liu and S.-J. Su. A Potentially Gridless Solution Method for the Compress-

ible Euler/Navier-Stokes Equations. in 34th Aerospace Sciences Meeting & Exhibit,

Reno, NV, January 1996. AIAA. AIAA-96-0526;

R. LShner. Some Useful Renumbering Stategies for Unstructured Grids. Interna-

tional Journal for Numerical Methods in Engineering, 36(19):3259-3270, October

1993.

R. L6hner and M. Galle. Minimization of Indirect Addressing for Edge-Based Field

Solvers. In 40th Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2002.
AIAA. AIAA-2002-0967.

G. R. Luecke, M. Kraeva, and L. Ju. Comparing the Performance of MPICH with

Cray's MPI and with SGI's MPI. Concurrency and Computation: Practice and

Experience, 2002. Accepted April 10, 2002.

S. Majumdar, G. Iaccarino, and E Durbin. RANS Solvers with Adaptive Structured

Boundary Non-Conforming Grids. Annual Research Briefs 208782, Center for Tur-

bulence Research, Stanford University, Stanford, CA, 2001.

D. J. Mavriplis. Large-Scale Parallel Viscous Flow Computations using an Unstruc-

tured Multigrid Algorithm. ICASE Report 99-44, ICASE, Hampton, VA, November

1999. NASA/CR- 1999-209724.

D. J. Mavriplis. Parallel Performance Investigations of an Unstructured Mesh

Navier-Stokes Solver. ICASE Report 2000-13, ICASE, Hampton, VA, March 2000.
NASA/CR-2000-210088.

D. J. Mavriplis. Parallel Unstructured Mesh Analysis of High-Lift Configurations. In

AIAA 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 2000. AIAA-
2000-0923.

D. J. Mavriplis and S. Pirzadeh. Large-Scale Parallel Unstructured Mesh Compu-

tations for 3D High-Lift Analysis. ICASE Report 99-09, ICASE, Hampton, VA,

February 1999. NASA/CR- 1999-208999.

227



[100]

[101]

[102]

[ 1031

[104]

[lO5]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

R. Meakin. Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor

Simulations. In 11th AIAA Computational Fluid Dynamics Conference, Orlando,

FL, July 1993. AIAA-93-3350-CP.

R. Meakin. On the Spatial and Temporal Accuracy of Overset Grid Methods for

Moving Body Problems. In 12th Applied Aerodynamics Conference, Colorado

Springs, CO, June 1994. ALAA-94-1925-CP.

R. L. Meakin. An Efficient Means of Adaptive Refinement Within Systems of Over-

set Grids. In 12th AIAA Computational Fluid Dynamics Conference, San Diego,

CA, June 1995. AIAA-95-1722-CP.

R. L. Meakin. On Adaptive Refinement and Overset Structured Grids. In 13th AIAA

Computational Fluid Dynamics Conference, Snowmass Village, CO, June 1997.

AIAA-97-1858-CR

J. E. Melton, M. J. Berger, M. J. Aftosmis, and M. D. Wong. 3D Applications of

a Cartesian Grid Euler Method. In 33rd Aerospace Sciences Meeting and Exhibit,

Reno, NV, January 1995. AIAA. AIAA-95-0853.

J. E. Melton, E Y. Enomoto, and M. J. Berger. 3D Automatic Cartesian Grid Gen-

eration for Euler Flows. In l lth AIAA Computational Fluid Dynamics Conference,

Orlando, FL, July 1993. AIAA-93-3386-CR

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard

(Version 1.1), June 1995. http://www.mpi-forum.org.

Message Passing Interface Forum. MPI-2: Extension to the Message-Passing Inter-

face, July 1997. http://www.mpi-forum.org.

G. H. Miller and E. G. Puckett. A High-order Godunov Method for Multiple Con-

densed Phases. Journal of Computational Physics, 128(1 ): 134-164, 1996.

R. A. Mitcheltree, M. D. Salas, and H. A. Hassan. Grid Embedding Technique Using

Cartesian Grids for Euler Solutions. AIAA Journal, 26(6):754-756, June 1988.

J. Mohd-Yosuf. Combined Immersed-Boundary/B-spline Methods for Simulations

of Flow in Complex Geometries. Annual research briefs, Center for Turbulence

Research, Stanford University, Stanford, CA, 1997.

J. Mohd-Yosuf. Development of Immersed Boundary Methods for Complex Geome-

tries. Annual research briefs, Center for Turbulence Research, Stanford University,

Stanford, CA, 1998.

M. Moultin and J. Steinhoff. A Technique for the Simulation of Stall with Coarse-

Grid CFD Methods. In AIAA 38th Aerospace Sciences Meeting, Reno, NV, January

2000. AIAA-2000-0277.

228



[113]

[114]

[115]

[116]

[1171

[118]

[119]

[120]

[121]

[1221

[123]

[124]

B. Mfiller, T. Berg!ind, and A. Rizzi. Implicit Central Difference Simulation of

Compressible Navier-Stokes Flow Over a NACA0012 Airfoil. In M. O. Bfisteau,

R. Glowinski, J. Periaux, and H. Viviand, editors, Numerical Simulations of Com-

pressible Navier-Stokes Flows, Notes on Numerical Fluid Mechanics, pages 183-

200. Friedr. Vieweg & Sohn, 1987.

M. Murayama and !K. Nakahashi. Numerical Simulation of Vortical Flows Using

Vorticity Confinement Coupled with Unstructured Grid. In 39th AIAA Aerospace

Sciences Meeting and Exhibit, Reno, NV, January 2001. AIAA-2001-0606.

S. M. Murman, M. J. Aflosmis, and M. J. Berger. Numerical Simulation of Rolling-

Airframes Using a Multi-Level Cartesian Method. In 20th AIAA Applied Aerody-

,,,,_;,,_ t",_,,¢,,,.o,,-a qt l cmi% MO, lnne 9(109 ATAA. ATAA-2002-2798.

NASA Ames Research Center. Cluster T27B Existing Configuration. Internal NASA

Ames System Documentation, 29 November 2001.

NASA Ames Research Center. NAS O2K Cluster Hard-

ware Information. On-Line Documentation, 7 December 2001.
I

http://www.nas.nasa.gov/Groups/SciCon/O2K/Hardware/index.html.

NASA Ames 'Research Center. NAS O2K Cluster Soft-

ware Information. On-Line Documentation, 7 December 2001.

http://www.nas.nasa.gov/Groups/SciCon/O2K/Software/index.html.

North Atlantic Treaty Organization. Test Cases for Inviscid Flow Field Methods.

Technical Report AGARD-AR-211, North Atlantic Treaty Organization Advisory

Group for Aerospace Research and Development, 1985. Report of Fluid Dynamics

Panel Working Group 07.
i

E. Oktay, N. Alemdaroglu, E. Tarhan, E Champigny, and R d'Espiney. Euler and

Navier-Stokes Solutions for Missiles at High Angle of Attack. Journal of Spacecraft

and Rockets, 36(6):850-858, November 1999.

OpenMP Architecture Review Board. OpenMP C and C++ Application Program

Interface." Version 1.0, October 1998. http://www.openmp.org.

OpenMP Architecture Review Board. OpenMP FORTRAN Application Program

Interface: Version 2.0, November 2000. http://www.openmp.org.

R S. Pacheco. Parallel Computing with MPI. Morgan Kaufmann Publishers, Inc.,
San Francisco, 1997.

S. A. Pandya and M. J. Aftosmis. Computation of External Aerodynamics for a

Canard Rotor/Wing Aircraft. In 39th AIAA Aerospace Sciences Meeting and Exhibit,

Reno, NV, January 2001. AIAA-2001-0997.

229



[125]

[126]

[127]

[128]

[129]

[1301

[131]

[132]

[133]

[1341

[135]

D. G. Pearce, S. A. Stanley, E W. Martin, Jr., R. J. Gomez, G. J. Le Beau, R G.

Buning, W. M. Chan, I.-T. Chiu, A. Wulf, and V. Akdag. Development of a Large

Scale Chimera Grid System for the Space Shuttle Launch Vehicle. In 31stAerospace

Sciences Meeting & Exhibit, Reno, NV, January 1993. AIAA. AIAA-93-0533.

R. B. Pember, J. B. Bell, E Colella, W. Y. Crutchfield, and M. L. Welcome. An

Adaptive Cartesian Grid Method for Unsteady Compressible Flow in Irregular Re-

gions, http://citeseer.nj.nec.com/pember93adaptive.html, 1993.

R. B. Pember, J. B. Bell, R Colella, W. Y. Crutchfield, and M. L. Welcome. Adaptive

Cartesian Grid Methods for Representing Geometry in Inviscid Compressible Flow.

In 11th AIAA Computational Fluid Dynamics Conference, Orlando, FL, July 1993.
AL&A-93-3385-CR

C. S. Peskin. Numerical Analysis of Blood Flow in the Heart. Journal of Computa-

tional Physics, 25:220-252, 1977.

C. S. Peskin. The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and

Computational Methods. Annual Review of Fluid Mechanics, 14:235-259, 1982.

A. Pothen, H. D. Simon, and K.-E Liou. Partitioning Sparse Matrices with Eigenvec-

tors of Graphs. SIAM Journal on Matrix Analysis & Applications, 11(3):430--452,

July 1990.

M. A. Potsdam. An Unstructured Mesh Euler and Interactive Boundary Layer

Method for Complex Configurations. In AIAA 12th Applied Aerodynamics Con-

ference, Colorado Springs, CO, June 1994. AIAA-94-1844.

T. H. Pulliam. Euler and Thin layer Navier Stokes Codes: ARC2D, ARC3D. In K.

C. Reddy and J. S. Steinhoff, editors, Computational Fluid Dynamics, A workshop

Held at The University of Tennessee Space Institute, pages 15.1-15.85. University

of Tennessee Space Institute, Tullahoma, TN, March 1984. UTSI Publication No
E02-4005-023-84.

T. H. Pulliam and J. T. Barton. Euler Computations of AGARD Working Group 07

Airfoil Test Cases. In AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January

1985. AIAA-85-0018.

T. H. Pulliam and J. L. Steger. On Implicit Finite-Difference Simulations of Three

Dimensional Flow. In AIAA 16th Aerospace Sciences Meeting, Huntsville, AL, Jan-

uary 1978. AIAA-78-10.

J. W. Purvis and J. E. Burkhalter. Prediction of Critical Mach Number for Store

Configurations. AIAA Journal, 17(11): 1170-1177, November 1979.

230



[136]

[137]

[1381

[139]

[140]

[141]

[1421

[143]

[144]

[145]

[146]

[147]

J. J.Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynamics.

PhD thesis, Cranfield Institute of Technology, Wiltshire, UK, January 1991.

J. J. Quirk. AMRITA - A Computational Facility (for CFD Modelling). In Lecture

Notes for 29th Computational Fluid Dynamics Lecture Series. von Karman Institute

for Fluid Dynamics, Rhode-Saint-Gen6se, Belgium, February 1998.

S. A. Ragab. Euler/Boundary Layer Solutions for Vortex Separation from Smooth

Surfaces. In AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January 1985.

AIAA-85-0016.

M. Rangarajan and L. Iftode. Software Distributed Shared Memory over Virtual In-

terface Architecture: Implementation and Performance. In 4th Annual Linux Show-

case & Conference, pages 341-352, Atlanta, GA, October 2000.

A. Rizzi. Numerical Implementation of Solid-Body Boundary Conditions for the

Euler Equations. Zeitschrift fiir angewandte Mathematik und Mechanik, 58:T301-

T304, 1978.

R L. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes. Journal of Computational Physics, 43:357-372, 1981.

R L. Roe and J. Pike. Efficient Construction and Utilisation of Approximate Rie-

mann Solutions. In Computing Methods in Applied Science and Engineering. North-

Holland, 1994.

D. Roose and R. Van Driessche. Parallel Computers and Parallel Algorithms for

CFD: An Introduction. In Special Coarse on Parallel Computing in CFD, Rhode-

Saint-Gen_se, Belgium and NASA Ames, Moffett Field, CA, October 1995. North

Atlantic Treaty Organization. AGARD Report-807.

J. K. Salmon, M. S. Warren, and G. S. Winkelmans. Fast Parallel Tree Codes for

Gravitational and Fluid Dynamical N-Body Problems. International Journal of Su-

percomputer Applications and High Performance Computing, 8(2): 129-142, 1994.

R. Scardovelli and S. Zaleski. Direct Numerical Simulation of Free-Surface and

Interfacial Flow. Annual Review of Fluid Mechanics, 31:567-603, 1999.

V. Schmitt and E Charpin. Pressure Distributions on the ONERA-M6-Wing at Tran-

sonic Mach Numbers. In Experimental Data Base for Computer Program Assess-

ment. North Atlantic Treaty Organization, May 1979. AGARD Advisory Report

138.

M. S. Selig and J. J. Guglielmo. High-Lift Low Reynolds Number Airfoil Design.

Journal of Aircraft, 34(1):72-79, January 1997.

231



[148]

[1491

[150]

[151]

[1521

[1531

[154]

[155]

[156]

[157]

[1581

D. Sharov, H. Luo, J. D. Baum, and R. L/Shner. Implementation of Unstructured

Grid GMRES+LU-SGS Method on Shared-Memory, Cache-Based Parallel Com-

puters. In AIAA 38th Aerospace Sciences Meeting & Exhibit, Reno, NV, January
2000. AIAA-2000-0927.

S. T. Shaw and N. Qin. Unsteady Flow Around Helicopter Rotor Blade Sections in

Forward Flight. Aeronautical Journal, 103:35-44, 1999.

H. D. Simon. Partitioning of Unstructured Problems for Parallel Processing. In

Symposium on Parallel Methods on Large-Scale Structural Analysis and Physics

Applications, Hampton, VA, February 1991.

M. Snir, R Hochschild, D. D. Frye, and K. J. Gildea. The Communication Software

and Parallel Environment of the IBM SP2. IBM Systems Journal on Scalable Parallel

Computing, 34(2):205-221, 1995.

J. L. Steger. Implicit Finite Difference Simulation of Flow About Arbitrary Ge-

ometries With Application to Airfoils. In AIAA lOth Fluid & Plasma Dynamics

Conference, Albuquerque, NM, June 1977. AIAA-77-665.

J. L. Steger, E C. Dougherty, and J. A. Benek. A Chimera Grid Scheme. In K. N.

Ghia and U. Ghia, editors, Advances in Grid Generation: Presented at the Applied

Mechanics, Bioengineering, and Fluids Engineering Conference, volume 5, pages

59-69. The Fluid Engineering Division, ASME, Houston, TX, June 1983.

J. L. Steger and W. R. Van Dalsem. Developments in the Simulation of Separated

Flows Using Finite Difference Methods. In AIAA 3rd Symposium on Numerical

and Physical Aspects of Aerodynamic Flows, pages 1-20, Long Beach, CA, January
1985.

J. Steinhoff and D. Underhill. Modification of the Euler Equations for "Vorticity

Confinement": Application to the Computation of Interacting Vortex Rings. Physics

of Fluids, 6(8):2378-2744, August 1994.

J. Steinhoff, W. Yonghu, and W. Lesong. Efficient Computation of Separating High

Reynolds Number Incompressible Flows Using Vorticity Confinement. In AIAA

37th Aerospace Sciences Meeting, Reno, NV, January 1999. AIAA-99-3316.

T. Sterling, D. Savarese, D. J. Becker, B. Fryxell, and K. Olson. Communication

Overhead for Space Science Applications on the Beowulf Parallel Workstation. In

Fourth IEEE International Symposium on High Performance Distributed Comput-

ing, pages 23-30, Washington, DC, August 1995.

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher. Computational Fluid Mechan-

ics and Heat Transfer. Series in Computational and Physical Processes in Fluid

232



[159]

[1601

[1611

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

MechanicsandThermalSciences.HemispherePub.Corp.,Taylor& Francis,Wash-
ington,DC,2ndedition,1997.

E.E Toro.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practi-

cal Introduction. Springer-Verlag, New York, 2nd edition, 1999.

S. Tu. Development of a Solution Adaptive Cartesian-Grid Solver for 2-D Thero

mochemical Nonequilibrium Flows. PhD thesis, Georgia Institute of Technology,

Atlanta, GA, November 2001.

H. S. Udaykumar, R. Mittal, R Rampunggoon, and A. Khanna. A Sharp Interface

Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries.

Journal of Computational Physics, 174(1 ):345-380, 2001.

W. R. Van Dalsem and J. L. Steger. Finite-Difference Simulation of Transonic Sep-

arated Flow Using a Full Potential-Boundary Layer Interaction Approach. In AIAA

16th Fluid and Plasma Dynamics Conference, Danvers, MA, July 1983. AIAA-83-

1689.

M. Van Dyke. Higher-Order Boundary-Layer Theory. In W. R. Sears and

M. Van Dyke, editors, Annual Review of Fluid Mechanics, volume 1, pages 265-

292. Annual Reviews, Inc., Palo Alto, CA, 1969.

B. van Leer. Towards the Ultimate Conservative Difference Scheme HI: Upstream-

Centered Finite Difference Schemes for Ideal Compressible Flow. Journal of Com-

putational Physics, 23:263-275, 1977.

B. van Leer. Towards the Ultimate Conservative Difference Scheme IV: A New

Approach to Numerical Convection. Journal of Computational Physics, 23:276-

299, 1977.

B. van Leer. Towards the Ultimate Conservative Difference Scheme V: A Second

Order Sequel to Godunov's Method. Journal of Computational Physics, 32:101-

136, 1979.

B. van Leer, C. H. Tai, and K. G. Powell. Design of Optimally-Smoothing Multi-

Stage Schemes for the Euler Equations. In 9th AIAA Computational Fluid Dynamics

Conference, Washington, DC, July 1989. AIAA-89-1933-CE

V. N. Vatsa and J. E. Carter. Analysis of Airfoil Leading Edge Separation Bubbles. In

AIAA 21st Aerospace Sciences Meeting, Reno, NV, January 1983. AIAA-83-0300.

V. Venkatakrishnan. On the Accuracy of Limiters and Convergence to Steady State

Solutions. In AIAA 31st Aerospace Sciences Meeting, Reno, NV, January 1993.
AIAA-93-0880.

233



[170]

[171]

[172]

[173]

rl_/A-I
l.t t'-tj

[175]

[1761

[177]

[178]

[179]

[180]

[181]

[182]

V. Venkatakrishnan. Parallel Implicit Unstructured Grid Euler Solvers. ICASE Re-

port 94-04, ICASE, Hampton, VA, January 1994. NASA/CR-191594.

V. Venkatakrishnan. Implicit Schemes and Parallel Computing in Unstructured Grid

CFD. ICASE Report 95-28, ICASE, Hampton, VA, April 1995. NASA/CR- 195071.

V. Venkatakrishnan. A Perspective on Unstructured Grid Flow Solvers. ICASE

Report 95-03, ICASE, Hampton, VA, January 1995. NASA/CR- 195025.

V. Venkatakrishnan and H. D. Simon. A MIMD Implementation of a Parallel Euler

Solver for Unstructured Grids. The Journal of Supercomputing, 6(2): 117-137, June
1992.

±VX. ¥ IIIU-I_Lil. t,._Ull_k¢l ¥ (.ttlUtl -L_klU_ttlUll_ UI UI;t_Uy lllallllk,O III _.--Ul ¥ llllll.e(.tl'k--UUI t.illt_-ttk¢

Systems. Journal of Computational Physics, 14(1): 105-125, 1974.

R. G. Voigt. Where are the Parallel Algorithms? ICASE Report 85-02, ICASE,

Hampton, VA, January 1985. NASA/CR- 172516.

D. Voorhies. Space-Filling Curves and a Measure of Coherence. In J. Arvo, editor,

Graphic Gems II, The Graphic Gem Series, pages 26-30. Academic Press, Inc., New
York, NY, 1991.

R. W. Walters and J. L. Thomas. Advances in upwind relaxation methods. In A. K.

Noor and J. T. Oden, editors, State-of-the-Art Surveys on Computational Mechanics,

pages 145-183. The American Society of Mechanical Engineers, 1989.

G. Wang, L. N. Sankar, and H. Tadghaghi. Prediction of Rotorcraft Noise with

a Low-Dispersion Finite Volume Scheme. AIAA Journal, 38(3):395-401, March
2000.

R Wang. Massively Parallel Finite Volume Computation of Three-Dimensional

Thermal Convective Flows. Advances in Engineering Software, 29(3-6):307-315,
1998.

Z. J. Wang. A Fast Nested Multi-Grid Viscous Flow Solver for Adaptive Carte-

sian/Quad Grids. In 27th AIAA Fluid Dynamics Conference, New Orleans, LA, June
1996. AIAA-96-2091.

Z. J. Wang. A Global BMRES/Multi-Grid Scheme for an Adaptive Cartesiarl/Quad

Grid Flow Solver On Distributed Memory Machines. In 13th AIAA Computational

Fluid Dynamics Conference, Snowmass Village, CO, June 1997. AIAA-96-2091.

Z. J. Wang. A Quadtree-Based Adaptive Cartesian/Quad Grid Flow Solver for

Navier-Stokes Equations. Computers & Fluids, 27(4):529-549, 1998.

234



[183]

[184]

[185]

[1861

[187]

[1881

[189]

[190]

[191]

[192]

[193]

[1941

Z. J. Wang and Y. Sun. A Curvature-Based Wall Boundary Condition for the Euler

Equations on Unstructured Grids. In 40th Aerospace Sciences Meeting and Exhibit,

Reno, NV, January 2002. AIAA. AIAA-2002-0966.

B. Wedan and J. C. South, Jr. A Method for Solving the Transonic Full-Potential

Equation for General Configurations. In AIAA 6th Computational Fluid Dynamics

Conference, Danvers, MA, July 1983. AIAA-83-1889.

Y. Wenren, M. Fan, W. Dietz, G. Hu, C. Braun, and J. Steinhoff. Efficient Eulerian

Computation of Realistic Rotorcraft Flows Using Vorticity Confinement - A Survey

of Recent Results. In AIAA 39th Aerospace Sciences Meeting, Reno, NV, January
2001. AIAA-2001-0996.

E M. White. Viscous Fluid Flow. McGraw-Hill Series in Mechanical Engineering.

McGraw-Hill, New York, 2nd edition, 1991.

Z.-N. Wu and H. Zou. Grid Overlapping for Implicit Parallel Computation of Com-

pressible Flows. Journal of Computational Physics, 157 (1):2-43, 2000.

G. Yang, D. M. Causon, D. M. Ingram, R. Saunders, and R Batten. A Cartesian Cut

Cell Method for Compressible Flows Part A: Static Body Problems. The Aeronauti-

cal Journal, 101(2):47-56, February 1997.

G. Yang, D. M. Causon, D. M. Ingrain, R. Saunders, and E Batten. A Cartesian

Cut Cell Method for Compressible Flows Part B: Moving Body Problems. The

Aeronautical Journal, 101(2):57-65, February 1997.

T. Ye, R. Mittal, H. S. Udaykumar, and W. Shyy. An Accurate Cartesian Grid

Method for Viscous Incompressible Flows with Complex Immersed Boundaries.

Journal of Computational Physics, 156(2):209-240, 1999.

T. Ye, R. R. Mittal, H. S. Udaykumar, and W. Shyy. A Cartesian Grid Method for

Viscous Incompressible Flows with Complex Immersed Boundaries. In AIAA 3rd

Weakly Ionized Gases Workshop, Norfolk, VA, November 1999. AIAA. AIAA-99-
3312.

H. Y. Yoon, S. Koshizuka, and Y. Oka. Particle-Gridless Hybrid Method for Incom-

pressible Flows. International Journal for Numerical Methods in Fluids, 30(4):407-

424, 1999.

H. Youngren and M. Drela. Viscous/Inviscid Method for Preliminary Pesign of Tran-

sonic Cascades. In 27th AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference,

Sacramento, CA, June 1991. AIAA-91-2364.

H. Zhang, M. Reggio, J. Y. Trepanier, and R. Camarero. Discrete Form of the GCL

for Moving Meshes and Its Implementation in CFD Schemes. Computers & Fluids,

22(1):9-23, 1993.

235



VITA

David D. Marshall was born in Tonawanda, New York, USA on March 20, 1972. He re-

ceived his B.S. degree in Mechanical Engineering with Aerospace Interests from Worcester

Polytechnic Institute, Worcester, Massachusetts, USA in February i994. He then entered

the School of Aerospace Engineering at Georgia Institute of Technology in Atlanta, Geor-

gia, USA and received his M.S. degree in Aerospace Engineering in August of 1995. After

leaving Georgia Tech, he spent four years working, first at Lockheed-Martin Management

& Data Systems in Springfield, Virginia, USA for one year and then at Avtec Systems in

Fairfax, Virginia until returning to Georgia Tech in September 1999 to enter the Aerospace

Engineering doctoral program.

236


